
UNIVERSITY CARLOS III OF MADRID

DOCTORAL THESIS

Enhancing the reliability of digital

signatures as non-repudiation evidence

under a holistic threat model

Author:
Jorge López Hernández-Ardieta

Supervisor:
Prof. Dr. Ana Isabel González-Tablas Ferreres

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

Leganés, February 2011

TESIS DOCTORAL

Enhancing the reliability of digital signatures as
non-repudiation evidence under a holistic threat model

Autor: Jorge López Hernández-Ardieta

Directora: Prof. Dra. Ana Isabel González-Tablas Ferreres

Firma del Tribunal Calificador:

Firma

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Calificación:

Leganés, de de

A Nuria

Agradecimientos

Ante todo, quiero agradecer profundamente a mi directora de tesis, Ana-

bel, el esfuerzo que ha dedicado a lo largo de estos cuatro largos años, no

exentos de imprevistos y dificultades. Anabel, no sólo has realizado una

magńıfica labor como directora, guiándome en momentos de incertidum-

bre y vislumbrando aquellas lagunas en mi investigación, sino que también

me has aportado un valioso legado tras el largo viaje que supone una tesis

doctoral: haber aprendido a realizar una investigación cŕıtica, sólida y fun-

damentada. Gracias por tu apoyo, pero también por los momentos duros

en los que tu exigencia ha hecho de esta tesis una realidad.

Quiero también agradecer a Benjamı́n, con todo mi cariño, su apoyo en

otras lides. Te debo más de una, ya lo sabes. Pero sobre todo, te debo algo

que es muy importante para mı́: ser parte de este grupo de investigación,

y, en definitiva, de esta Universidad. Arturo, tú también tienes gran parte

de culpa, y muchas gracias por ello. Gracias también a Chema por la

disposición tan estupenda que tienes siempre ante todo, y por el apoyo que

me has brindado siempre que has tenido oportunidad.

No puedo expresar en palabras la deuda eterna que tendré con mis padres.

Gracias a vosotros, soy lo que soy. Sin vuestra sabiduŕıa y amor, no habŕıa

sido capaz de enfrentarme a estos retos. Y a mi hermano, que le debo tantos

años de hermandad en el sentido más amplio de la palabra. Ánimo brother,

que ya te queda menos para acabar la tuya.

Esta tesis es fruto de un inmenso esfuerzo que he podido realizar gracias al

sacrificio de mi mujer, Nuria. Sé que sin ti no habŕıa podido conseguirlo.

Pienso recompensarte con creces durante todos los años maravillosos que

nos quedan por delante.

Abstract

Traditional sensitive operations, like banking transactions, purchase pro-

cesses, contract agreements etc. need to tie down the involved parties

respecting the commitments made, avoiding a further repudiation of the

responsibilities taken. Depending on the context, the commitment is made

in one way or another, being handwritten signatures possibly the most com-

mon mechanism ever used. With the shift to digital communications, the

same guarantees that exist in real world transactions are expected from

electronic ones as well. Non-repudiation is thus a desired property of cur-

rent electronic transactions, like those carried out in Internet banking, e-

commerce or, in general, any electronic data interchange scenario.

Digital evidence is generated, collected, maintained, made available and

verified by non-repudiation services in order to resolve disputes about the

occurrence of a certain event, protecting the parties involved in a trans-

action against the other’s false denial about such an event. In particular,

a digital signature is considered as non-repudiation evidence which can be

used subsequently, by disputing parties or by an adjudicator, to arbitrate

in disputes.

The reliability of a digital signature should determine its capability to be

used as valid evidence. The reliability depends on the trustworthiness of the

whole life cycle of the signature, including the generation, transfer, verifica-

tion and storage phases. Any vulnerability in it would undermine the reli-

ability of the digital signature, making its applicability as non-repudiation

evidence difficult to achieve. Unfortunately, technology is subject to vulner-

abilities, always with the risk of an occurrence of security threats. Despite

that, no rigorous mechanism addressing the reliability of digital signatures

technology has been proposed so far.

The main goal of this doctoral thesis is to enhance the reliability of digital

signatures in order to enforce their non-repudiation property when acting

as evidence.

In the first instance, we have determined that current technology does

not provide an acceptable level of trustworthiness to produce reliable non-

repudiation evidence that is based on digital signatures. The security

threats suffered by current technology are suffice to prevent the applica-

bility of digital signatures as non-repudiation evidence. This finding is also

aggravated by the fact that digital signatures are granted legal effectiveness

under current legislation, acting as evidence in legal proceedings regarding

the commitment made by a signatory in the signed document.

In our opinion, the security threats that subvert the reliability of digital

signatures had to be formalized and categorized. For that purpose, a holis-

tic taxonomy of potential attacks on digital signatures has been devised,

allowing their systematic and rigorous classification.

In addition, and assuming a realistic security risk, we have built a new

approach more robust and trustworthy than the predecessors to enhance

the reliability of digital signatures, enforcing their non-repudiation property.

This new approach is supported by two novel mechanisms presented in

this thesis: the signature environment division paradigm and the extended

electronic signature policies. Finally, we have designed a new fair exchange

protocol that makes use of our proposal, demonstrating the applicability in

a concrete scenario.

Resumen

Las operaciones sensibles tradicionales, tales como transacciones bancarias,

procesos de compra-venta, firma de contratos etc. necesitan que las partes

implicadas queden sujetas a los compromisos realizados, evitando aśı un

repudio posterior de las responsabilidades adquiridas. Dependiendo del

contexto, el compromiso se llevará a cabo de una manera u otra, siendo

posiblemente la firma manuscrita el mecanismo más comúnmente empleado

hasta la actualidad. Con el paso a las comunicaciones digitales, se espera que

las mismas garant́ıas que se encuentran en las transacciones tradicionales se

proporcionen también en las electrónicas. El no repudio es, por tanto, una

propiedad deseada a las actuales transacciones electrónicas, como aquellas

que se llevan a cabo en la banca online, en el comercio electrónico o, en

general, en cualquier intercambio de datos electrónico.

La evidencia digital se genera, recoge, mantiene, publica y verifica medi-

ante los servicios de no repudio con el fin de resolver disputas acerca de la

ocurrencia de un determinado evento, protegiendo a las partes implicadas

en una transacción frente al rechazo respecto a dicho evento que pudiera

realizar cualquiera de las partes. En particular, una firma digital se consi-

dera una evidencia de no repudio que puede emplearse posteriormente por

las partes enfrentadas o un tercero durante el arbitrio de la disputa.

La fiabilidad de una firma digital debeŕıa determinar su capacidad para ser

usada como evidencia válida. Dicha fiabilidad depende de la seguridad del

ciclo de vida completo de la firma, incluyendo las fases de generación, trans-

ferencia, verificación, almacenamiento y custodia. Cualquier vulnerabilidad

en dicho proceso podŕıa socavar la fiabilidad de la firma digital, haciendo

dif́ıcil su aplicación como evidencia de no repudio. Desafortunadamente, la

tecnoloǵıa está sujeta a vulnerabilidades, existiendo siempre una probabil-

idad no nula de ocurrencia de amenazas a su seguridad. A pesar de ello,

hasta la fecha no se ha propuesto ningún mecanismo que aborde de manera

rigurosa el estudio de la fiabilidad real de la tecnoloǵıa de firma digital.

El principal objetivo de esta tesis doctoral es mejorar la fiabilidad de las

firmas digitales para que éstas puedan actuar como evidencia de no repudio

con garant́ıas suficientes.

En primer lugar, hemos determinado que la tecnoloǵıa actual no proporciona

un nivel aceptable de confianza para producir evidencias de no repudio

fiables basadas en firmas digitales. Las amenazas de seguridad que se ciernen

sobre la tecnoloǵıa actual son suficientes para evitar la aplicabilidad de las

firmas digitales como evidencia de no repudio. Esta situación se agrava por

el hecho de que las firmas digitales disponen de eficacia juŕıdica para actuar

como medio de prueba o evidencia en procedimientos legales respecto al

compromiso adquirido por el firmante en el documento firmado.

En nuestra opinión, las amenazas de seguridad que socavan la fiabilidad de

las firmas digitales teńıan que ser formalizadas y categorizadas. Con este

objetivo, se ha diseñado una taxonomı́a integral de ataques potenciales a la

firma digital que permite su clasificación sistemática y rigurosa.

Aśı mismo, y asumiendo un riesgo de seguridad realista, hemos construido

una nueva propuesta más robusta y confiable que las predecesoras para

mejorar la fiabilidad de las firmas digitales, reforzando aśı su propiedad de

no repudio. Esta nueva aproximación se basa en dos mecanismos novedosos

presentados en esta tesis: el paradigma de la división del entorno de firma

y las poĺıticas extendidas de firma electrónica. Finalmente, hemos diseñado

un nuevo protocolo de intercambio justo donde se integra esta propuesta,

demostrando su aplicabilidad en un escenario concreto.

Contents

List of Figures vii

List of Tables ix

I Introduction 1

1 Introduction 3

1.1 Context . 3

1.2 Statement of the Problem . 4

1.3 Objectives and Contributions . 10

1.4 Thesis Organization . 13

1.5 Syntax Notation . 16

Acronyms, Abbreviations and Definitions 17

II State of the Art 19

2 Fundamentals on Digital Signatures 21

2.1 Digital Signatures . 21

2.2 Public Key Infrastructure . 22

2.3 Electronic Signatures . 24

2.4 Electronic Signature Policies . 25

2.5 Electronic Signatures from a Legal Viewpoint 28

3 Non-repudiation Services 33

3.1 General Model for Non-repudiation Services 33

3.2 Non-repudiation Using Digital Signatures 35

3.3 Fair Non-repudiation and Fair Exchange Protocols 37

i

CONTENTS

4 Taxonomies of Attacks and Vulnerabilities in Computer Systems 41

4.1 Introduction . 41

4.2 The Dimension Approach: Lindqvist and Johsson’s Taxonomy and Others 42

4.3 CEN’s Classification of Threats on Signature Creation Applications . . . 43

4.4 Hill’s Taxonomy of Attacks on XML Signatures 44

4.5 Kain’s Taxonomy . 44

4.6 Rae and Wildman’s Taxonomy . 45

4.7 Hansman and Hunt’s Taxonomy . 46

4.8 The Common Attack Pattern Enumeration and Classification 47

5 Security Enhancing Technologies and Methods 49

5.1 Security Assurance by Objective Evaluation 49

5.2 Secure Software Development Methodologies 52

5.3 Revocation Mechanisms and Limitations on Key Usages 53

5.4 Smart Card-based Solutions . 56

5.5 Usage of Mobile Devices . 57

5.6 Forcing a Confirmation Step . 58

5.7 Split Trust Paradigm . 58

5.8 Trusted Computing Technologies . 61

5.9 Server-Aided Signatures . 62

5.10 Other Proposals . 63

III Proposal 65

6 A Taxonomy of Attacks on Digital Signatures 67

6.1 Terms and Definitions . 67

6.2 System Model . 69

6.2.1 Signature creation environment 69

6.2.2 Signature verification environment 72

6.3 Threat Model . 74

6.3.1 Assets, security objectives and security functional requirements . 75

6.3.2 Faults and service failures . 78

6.3.3 Attacker profile . 80

6.3.4 Assumptions on the threat model 81

6.4 A Taxonomy of Attacks on Digital Signatures 82

6.4.1 Dimension one: Attacker’s goal 82

6.4.2 Dimension two: Method of attack 84

6.4.3 Dimension three: Target of the attack 94

ii

CONTENTS

6.5 Method of Classification . 97

6.6 Chapter Summary . 100

7 Division of the Signature Environment 101

7.1 Overview . 101

7.2 Implementing the Division Principle . 102

7.2.1 General rules . 103

7.2.2 Security mechanisms for evidence generation 104

7.2.2.1 Chaining mode . 104

7.2.2.2 Independent mode . 105

7.2.3 Security mechanisms for evidence verification 106

7.2.3.1 Chaining mode . 106

7.2.3.2 Independent mode . 108

7.2.4 Combination of schemes . 108

7.2.5 The binding between the environment and the signature creation

data . 109

7.2.5.1 By procedure . 110

7.2.5.2 By environment attestation 111

7.2.6 Some remarks . 113

7.2.6.1 Conscious data verification 113

7.2.6.2 Restricted format of data to be signed 113

7.3 Chapter Summary . 114

8 Extended Electronic Signature Policies 115

8.1 Policy Definition . 115

8.1.1 Base structure . 116

8.1.2 Policy identifier . 117

8.1.3 Validation policy . 118

8.1.4 Business and transactional domains 123

8.1.5 Signing roles . 125

8.2 Using the Policy . 126

8.2.1 The generation process . 126

8.2.2 The validation process . 129

8.2.2.1 Approach . 129

8.2.2.2 Pruning methods . 132

8.2.2.3 Refinement stage . 137

8.2.3 Integration in AdES formats . 138

8.2.4 Certificate extension . 140

8.3 Chapter Summary . 143

iii

CONTENTS

9 An Optimistic Fair Exchange Protocol based on Signature Policies 145

9.1 The Protocol . 145

9.1.1 Entities of the protocol . 147

9.1.2 Evidence exchanged . 148

9.1.3 Main protocol . 149

9.1.4 Recovery subprotocol . 151

9.1.5 Abort subprotocol . 152

9.1.6 Dispute resolution . 152

9.2 Implementation Guidelines . 153

9.2.1 Architecture . 154

9.2.2 Requirements for the communication channels 155

9.2.3 Electronic signature format . 157

9.2.4 Addition of validation information 159

9.2.5 Addition of new environments . 160

9.3 Chapter Summary . 161

IV Evaluation and Conclusions 163

10 Evaluation 165

10.1 Evaluation of the Taxonomy . 166

10.1.1 Evaluation against general requirements 166

10.1.2 Survey and classification of attacks on digital signatures 167

10.2 Analysis of the Enhancement of Evidence Reliability 173

10.2.1 Formal proofs . 173

10.2.1.1 Provable benefits of using several environments 173

10.2.1.2 Provable benefits of using heterogeneous environments . 175

10.2.1.3 Numerical examples . 178

10.2.1.4 Towards perfect security 179

10.2.2 Analysis respecting the taxonomy 180

10.3 Experimental Implementation . 188

10.3.1 Overview . 188

10.3.1.1 Architecture . 189

10.3.1.2 Electronic signature format 190

10.3.1.3 Set of signatures composition 194

10.3.2 Evaluation of the validation algorithm 196

10.3.3 OFEPSP+ simulation . 198

10.4 OFEPSP+ Formal Validation . 199

10.4.1 OFEPSP+ specification in HLPSL 200

iv

CONTENTS

10.4.1.1 Restrictions applied . 200

10.4.1.2 Analysis scenarios . 202

10.4.2 HLPSL correctness verification 203

10.4.3 OFEPSP+ security validation . 204

10.4.4 Informal analysis of fairness property 206

10.5 Chapter Summary . 208

11 Conclusions and Future Work 209

11.1 Conclusions . 209

11.2 Future Work . 212

V Bibliography and Appendices 217

Bibliography 219

A Publications and Patents 241

B Classified Attacks on Digital Signatures 243

C Extended Signature Policy Validation Algorithm 291

C.1 Graphical Representation of a Tree . 291

C.2 Validation Algorithm . 292

C.2.1 Exploring the TSi . 294

C.2.2 Signature Matching . 294

C.2.3 Pruning Methods . 296

C.2.3.1 Signer-based pruning 297

C.2.3.2 Path-based pruning . 297

C.2.3.3 Distribution-based pruning 298

C.2.3.4 Dimension-based pruning 298

C.2.4 Refinement Stage . 299

C.2.4.1 Detecting potential deadlocks 300

C.2.4.2 Detecting unvisited nodes 302

C.2.4.3 Evaluating the timing and sequence dependencies . . . 302

D Test Cases for the Extended Signature Policy Validation Algorithm 313

D.1 Textual Representation of a Tree . 313

D.2 Trees of Signatures for the Test Cases 316

D.3 Set of Signatures for the Test Cases . 318

D.4 Test Cases . 320

v

CONTENTS

E ASN.1 and XML Schemas 327

E.1 Extended Signature Policy ASN.1 definition 327

E.2 Extended Signature Policy XML definition 332

F Extended Signature Policy Example for OFEPSP+ 343

G High-Level Protocol Specification Language for OFEPSP+ 349

vi

List of Figures

6.1 The signature creation functional model (source [46]) 70

6.2 Adapted signature creation functional model 71

6.3 The signature verification functional model - initial verification systems

(source [47]) . 73

6.4 The signature verification functional model - subsequent verification sys-

tems (source [47]) . 74

6.5 Dimension “method of attack” (first 5 categories)) 85

6.6 Dimension “method of attack” (last 2 categories) 86

6.7 Dimension “target of the attack” . 95

7.1 Chaining mode evidence generation scheme using sequential signatures . 104

7.2 Chaining mode evidence generation scheme using embedded signatures . 105

7.3 Independent mode evidence generation scheme using parallel signatures 106

7.4 Chaining mode evidence verification scheme 107

7.5 Independent mode evidence verification scheme 108

8.1 Generic tree of signatures . 120

8.2 Distribution of a tree . 133

8.3 Example of a distribution used for a dimension-based pruning 134

8.4 Identifier-based pruning example . 135

8.5 Deadlock example . 137

9.1 Signature policies architecture . 155

10.1 Number of attacks per goal category . 168

10.2 Distribution of attacks: Target versus Goal 169

10.3 Distribution of attacks: Method versus Goal (generation) 171

10.4 Distribution of attacks: Method versus Goal (verification) 172

10.5 Division of the signature environment 174

10.6 Homogeneous environments . 175

10.7 Overview of the architecture . 189

vii

LIST OF FIGURES

C.1 An example of a graphical representation of a tree 292

C.2 Undoing a matching at the origin (ATS) 307

C.3 Undoing a matching at the origin (RTS) 308

C.4 Undoing a matching at the destination (RTS) 311

viii

List of Tables

1.1 Relationship between problems, objectives and contributions 12

6.1 Trace between assets, security objectives and security functional require-

ments . 78

6.2 Relationship between the Dimension Attacker’s Goal and Dimension

Method of Attack . 96

9.1 Minimum requirements for communication channels in the protocol ar-

chitecture. 158

10.1 Numerical examples of the PSA reduction when applying the paradigm

of the division of signature environment in a heterogeneous configuration 178

10.2 Numerical examples of the PSA reduction when applying the paradigm

of the division of signature environment in a homogeneous configuration 179

10.3 Validation results with OFMC and CL-AtSe respecting a single session

with legitimate agents and single sessions with intruder playing the role

of a legitimate agent . 204

10.4 Validation results with OFMC and CL-AtSe respecting parallel sessions

with legitimate agents playing different roles 204

10.5 Validation results with OFMC and CL-AtSe respecting parallel sessions

with intruder playing as legitimate agent(s) 205

10.6 Analysis scenario configurations for the tests 206

D.1 Mapping between xades:CommitmentTypeIndication URIs and values

used for the representation of TSis and SSis 314

D.2 TSis with one Primary Signature. 316

D.3 TSis with three Primary Signatures. 317

D.4 TSis with one Primary Signature and one CounterSignature each. 317

D.5 TSis with several levels of depth. 318

D.6 TSis for OFEPSP+ protocol (see Chapter 9). 318

D.7 SSis with one Primary Signature. 318

ix

LIST OF TABLES

D.8 SSis with three Primary Signatures. 319

D.9 SSis with several levels of depth. 319

D.10 SSis for OFEPSP+ protocol (see Chapter 9). 320

D.11 Test cases defined for SSis with one level of depth and one Primary

Signatures. 321

D.12 Test cases defined for SSis with one level of depth and three Primary

Signatures. 323

D.13 Test cases defined for SSis with several levels of depth. 324

D.14 Test cases defined for OFEPSP+ protocol (see Chapter 9). 325

x

Part I

Introduction

1

Chapter 1

Introduction

This Chapter introduces the context of the thesis, the statement of the problem, the

main objectives established in the thesis, the contributions achieved and the thesis

organization.

1.1 Context

This doctoral thesis belongs to the area of knowledge of information security. Infor-

mation security comprises the study of all aspects related to defining, achieving and

maintaining confidentiality, integrity, availability, non-repudiation, accountability, au-

thenticity and reliability of Information and Communications Technologies [111], by

implementing appropriate measures or mechanisms [218].

Five basic security services are identified in the ISO OSI Reference Model Security

Architecture [123]: access control, authentication, data confidentiality, data integrity,

and non-repudiation. These services provide assurance against the security threats of

unauthorized resource use, masquerade, unauthorized disclosure, unauthorized modifi-

cation, and repudiation, respectively.

In particular, this thesis is related to non-repudiation security services. A non-

repudiation service is defined by ISO/IEC as a service that generates, collects, main-

tains, makes available and verifies evidence concerning a claimed event or action in

order to resolve disputes about the occurrence or non occurrence of the event or action

[112]. The fundamental goal of a non-repudiation service is thus to protect the parties

involved in a transaction against the other’s false denial about such an event or action.

Non-repudiation services are of utmost importance in scenarios where parties’ inter-

ests are somehow put in place and might be opposite between them, and where an unfair

or malicious behavior can make a party gain a benefit from it. Unfortunately, several

examples can be found, like transactions carried out in Internet banking, e-commerce,

contract signing or, in general, any electronic data interchange scenario.

3

1. INTRODUCTION

In order to implement non-repudiation services, non-repudiation mechanisms pro-

vide protocols for the exchange of non-repudiation tokens specific to each non-repudiation

service. A non-repudiation token includes the evidence itself and, optionally, additional

data. ISO/IEC defines a general model for non-repudiation mechanisms providing ev-

idence based on cryptographic check values generated using symmetric [113] or asym-

metric [114] cryptographic techniques.

Within the ISO model, a digital signature is a non-repudiation token generated using

asymmetric techniques, and that is exchanged during a protocol and which can be used

subsequently, by disputing parties or by an adjudicator, to arbitrate in disputes. In

this thesis, we focus on the study of digital signatures when acting as non-repudiation

evidence, not considering other types of evidence. This interest is supported by the

fact that digital signatures are granted legal effectiveness under current legislation [76,

154, 229], acting as evidence in legal proceedings. Consequently, if a digital signature is

evaluated and finally considered as valid evidence by the Tribunal, the signatory must

confront the consequences derived from the signed document.

1.2 Statement of the Problem

When the life cycle of evidence is properly assured, it becomes valid in accordance with

the non-repudiation policy in force. In this case, evidence is considered as proof, mean-

ing that it serves to prove the existence of something. Valid evidence or proof avoids a

later repudiation of the commitments made in the transaction by the involved parties.

On the contrary, evidence which generation, transfer, maintenance or verification is not

reliable cannot contribute to the establishment of proof about an event or action. It

becomes useless.

A digital signature based on public key cryptography [63] fulfills the properties that

non-repudiation evidence should fulfill [238]. In particular, the origin and integrity of

evidence must be verifiable by a third party, and the validity of the evidence must be

undeniable.

Notwithstanding, the reliability of a digital signature determines its capability to

be used as valid evidence, and depends on the trustworthiness of the whole life cycle of

the signature. Any vulnerability in it would make the signature lose its effectiveness.

Unfortunately, technology is subject to vulnerabilities, always with the risk of an

occurrence of security threats. This situation produces undesirable consequences, that

we summarize next:

• Non-repudiation evidence based on digital signatures becomes useless as there

will always be a chance to prove the existence of a vulnerability in the evidence

life-cycle.

4

1.2 Statement of the Problem

• Non-repudiation evidence based on digital signatures is unfairly enforced if any

of the stages within its life-cycle is compromised but it cannot be proved by the

affected party.

From a legal perspective, and in case of disagreement respecting the authorship

of a certain signed document, the security of the means used to produce the digital

signature and evaluated at Court by an expert’s report (when required) will determine

whether the signature is accepted as valid evidence or not. The European and Spanish

legislations have intentionally formalized three types of signatures (qualified, advanced

and basic) in order to permit the application of the principle of relative importance,

where the measures to protect a signature from fraud must be adequate according to

the impact in case such fraud is suffered. In such cases, and taking into account the

three types of signatures defined in the legislation, the next problematic scenarios can

be found:

• A malicious signatory would be capable of taking advantage of the situation to

generate a signature and, later on, repudiate the commitment made in the signed

document by proving, on the balance of probabilities (in a civil action) or beyond

reasonable doubt (in a criminal action), that a vulnerability existed in the process

or the technology itself. This result would be inconsistent with the purported

reliability of qualified signatures and unfair for the relying party that accepted

the signature based on current legislations. There would be no entity to whom

attributing the authorship of the signature, and thus the consequences derived

from the signed document. The relying party would suffer from that uncertainty,

which was supposed to be theoretically improbable.

• An attacker that compromised the security measures may also take advantage of

the situation and generate a qualified signature on behalf of a purported signatory.

If the alleged signatory was not capable of proving that a vulnerability existed

in the process or technology used, he would have to deal with the commitments

made in the document fraudulently signed. In this case, the alleged signatory

would be clearly the one who suffered the consequences.

• In case of a basic or advanced signature, a malicious signatory would be capable

of repudiating the commitment made in the signed document if the other party

was not able to provide enough evidence in the opposite direction. Due to current

state of technology, most likely the malicious signatory would find a vulnerability

that counteracted any proof provided by the relying party. The relying party

would hardly achieve having the legal effectiveness of the signature enforced by

the Tribunal.

5

1. INTRODUCTION

• If an attacker was able to generate a non-qualified signature on behalf of the

purported signatory, and the other party was capable of providing evidence that

made the Tribunal consider the signature reliable enough, the alleged signatory

would have to deal with the commitments made in the document signed with

the fraudulent signature. The alleged signatory would be undefended again if

no evidence that proved the existence of a vulnerability or the occurrence of an

attack was found.

Therefore, two unfair rulings could be made by the Court:

• The alleged signatory must deal with the commitments made in a document

signed by a malicious external entity without his consent. In case of qualified sig-

natures, it should also be mentioned that, although the alleged signatory proved

that the private key was compromised, it is very likely that he will have to take

on the responsibilities as he would be charged with negligence for not keeping the

private key in a proper manner [60].

• The alleged signatory is capable of proving the existence of a vulnerability in

the process, avoiding the signature exercising its authentication function, that is,

identifying the apparent signatory as the subscriber of the document. As a result,

digital signatures would be repudiable, losing their property of non-repudiation

evidence, and thus, their usefulness as intended by the Law and the standards.

The reliability of a signature as evidence in a legal proceeding will highly depend

on the capability to find and prove the existence of a vulnerability in the process.

These scenarios are intended to raise awareness about the possible impact of applying

the current legislation when the trade between the signatory and the relying party

is not trustworthy due to party’s misbehavior and the inherent vulnerabilities of the

technology used.

The risk distribution that results from certificate revocation can be seen as a means

to invalidate a fraudulent signature, freeing the owner of the signing key from any

potential responsibility. However, the situation where the private key has been com-

promised but the certificate revocation has not been requested yet is possibly the most

probable one, at least until the alleged signatory is notified about the consequences to

be assumed from the fraudulently signed document.

Currently, there is little jurisprudence regarding signature repudiation, as the digital

signature has not spread among end users as initially expected. Certain authors defend

that the signature should be given a presumption of authenticity following the iuris et

de iure principle, and that implies that the alleged signatory is not given the chance

6

1.2 Statement of the Problem

to refute the authenticity of the signature. In their opinion, e-commerce would be

seriously damaged otherwise. However, if a signatory feels unprotected against fraud,

he will not be keen on putting his interests at risk either.

In particular, we have observed the next specific problems that needed to be ad-

dressed.

P1 - Lack of formal and holistic study of the security threats on digital

signatures

One must know the existence and nature of a threat, either intentional (attack)

or not, before designing a countermeasure for it. Many researchers have already des-

cribed and explained real or potential attacks on digital signatures, synthesizing such

knowledge into formal and rigorous categorizations. However, studies undertaken for a

particular field of knowledge are rarely applicable to others. In this sense, to date, no

holistic and complete study of attacks or vulnerabilities specific to digital signatures has

been performed. Several comprehensive and thorough studies have been done so far,

but none of them can be used to study in a holistic and rigorous manner the security

problem of digital signatures.

Consequently, current solutions are designed to deal with a specific subset of known

attacks. Because no complete catalog of potential attacks has been devised, it is still

not possible to guarantee that a holistic trustworthy solution of reliable digital signa-

tures exists.

P2 - Current solutions are not secure enough and unrealistic assumptions

are made

It has been largely demonstrated that current digital signature technology is not

flawless, suffering from a wide variety of vulnerabilities that an attacker can take advan-

tage of to subvert the security of digital signatures. In addition, the trustworthiness of

current end user environments is minimum, as there is a high probability that a domes-

tic computer is infected by malware, as reported by several studies [10, 160, 185, 198].

The level of confidence in the security measures implemented by a product can be

increased by following best practices and secure software development methodologies,

and performing an objective security evaluation by an accredited entity, following stan-

dard procedures [116, 120]. However, the nature of the evaluations and the unavoidable

human participation in such processes only permit to obtain a level of assurance, not a

certainty. Furthermore, the implied costs prevent most manufacturers from affording

these evaluations.

On the other hand, the operational environment, which is of utmost importance

to evaluate the overall security, cannot be easily evaluated when owned by end users.

7

1. INTRODUCTION

Notwithstanding, these environments, like home PCs, laptops or mobile devices are the

most common environments used nowadays by end users to perform transactions on

the Internet.

Some proposals aim at enhancing the security of transactions initiated from end user

environments, but few of them use digital signatures or any other type of cryptography

as the transaction evidence. Taking into account ISO general model of non-repudiation

and current legislation, evidence not based on cryptography lacks robustness to be

considered as legally binding.

Moreover, most proposals assume the existence of a trusted platform, device or soft-

ware (generally the underlying operating system). That assumption is contradictory to

the problem faced: the lack of a trustworthy platform from which performing sensitive

operations.

P3 - Limited electronic signature policy

ISO 13888-1 [112] establishes that, prior to the generation of evidence, the evidence

generator has to know which non-repudiation policy is acceptable to the verifier(s), the

kind of evidence that is required and the set of mechanisms that are acceptable to the

verifier(s).

When using digital signatures as evidence, electronic signature policies can be used

as the applicable non-repudiation policy. In this sense, a signature policy is a docu-

ment that collects a set of rules to create and validate electronic signatures, under

which an electronic signature can be deemed valid in a particular transaction context

[71]. Thereby, transacting parties are able to determine the conditions under which an

electronic signature becomes binding in a given business context.

Current definition of electronic signature policy addresses issues relating to single

signatures. The signature policy defined by ETSI and IETF supports the creation and

validation of a single signature. However, there are business models where more than

one signature is required in order to give the transaction legal validity or to make it

effective. For instance, a transaction where a contract of sale is to be signed may be

considered complete if and only if the signature of both buyer and seller is present.

Sometimes, the signature of an e-notary may be necessary as well. As a consequence,

no signatory should be held liable until every player has made the corresponding com-

mitment. In this case, a single signature is useless unless every signature is generated.

Moreover, some non-repudiation services, like those defined in ISO model [112], may

produce more than one evidence to complete a transaction, but all of them need to be

linked within the same transaction scope.

The increase of paper-based processes being transposed into the digital realm makes

current signature policy definition insufficient to cope with the new needs that arise.

8

1.2 Statement of the Problem

This limitation was pointed out by ETSI in a technical report published in 2003 [72].

In particular, a transaction may need certain types of multiple signatures, that can be

classified in the next three groups:

• Parallel signatures, which are applied on the same piece of information. They

are mutually independent signatures where the order of the signatures is not

important. For instance, a document may be electronically signed by two or

more parties, like in the contract sale example given above.

• Sequential signatures, which differ from parallel signatures in that the order is

significant (e.g. a data flow or transaction chain).

• Embedded signatures, where one signature is applied to another. The sequence

in which the signatures are applied is important and there is a strong interrela-

tionship. An example is a process where an electronic signature must be signed

(authorized) by another (e.g. an e-notary signature applied to another).

By combining these three types of signatures, all needs related to electronic signa-

tures can be covered. It is clear that the current signature policy definition must be

extended to include the management of multiple signatures.

We consider that there is an increasing need to resolve the problems stated above.

Digital signatures are considered by current legislation a key element to boost the e-

commerce under secure conditions. However, end users are being the main impediment

to such desired growth. They are prone to mistrust technology, specially when the

commitments that derive from its use, in particular, the application of non-repudiation

services, are legally binding. A reasonable and provable level of trustworthiness in non-

repudiation evidence would significantly increase the confidence of users, benefiting the

e-commerce in general.

The technological context within which the life cycle of a digital signature is enclosed

is paramount to set the boundaries of the security problem and thus find appropriate

solutions. In this thesis, we delimit the field of study to the generation and verification

stages of the digital signature life-cycle, and where the participation of a user is required,

as we consider that they are the most critical stages and which pose a higher risk to the

signature reliability. In addition, we delimit the research to environments that comply

with the functional models provided by CEN in [46] and [47], which are the reference

models in the generation and verification stages, respectively.

Therefore, in this thesis we address the described problems for digital signatures

generated by end users, who own and control the signing key and interact with the

signing capabilities offered by the environment. We also consider digital signatures

9

1. INTRODUCTION

verified by end users who participate during the verification of the signed information.

The physical environment where the signing or verification processes takes place can

be either under the user’s control and possession (e.g. personal computer, corporate

laptop, mobile phone, personal digital assistant etc.) or operated by a service provider

not necessarily related to or under the control of the user (e.g. any public place like a

metro station, bank etc.), but in any case accessible by him.

1.3 Objectives and Contributions

The main goal of this thesis is to enhance the reliability of digital signatures, enforcing

their non-repudiation property when acting as evidence.

In our opinion there was a need to address the next research topics, which have

been established as the objectives of this thesis:

O1 - Perform a formal and holistic study of the security threats on digital

signatures that permits to obtain a wide and complete view of the threats that

might affect the reliability of digital signature-based evidence. This formalized

knowledge would clearly contribute to design more robust approaches with ap-

propriate countermeasures.

O2 - Propose a more robust and realistic approach to generate and verify digital

signatures in a reliable manner and that better counteracts the threats identified

in the aforementioned study. The approach must not assume the existence of

a trusted platform or element on which leveraging the sensitive operation (i.e.

the generation and verification of evidence). Thereby, the reliability of digital

signatures under realistic scenarios will be enhanced, and thus the reliability of

non-repudiation evidence, increasing the confidence of users in electronic trans-

actions and technology in general.

O3 - Evolve current electronic signature policy in order to be able to manage a

set of signatures generated in a single transaction. Thereby, the presence and rela-

tionships among signatures as a binding requirement to enforce non-repudiation

evidence can be stipulated. The procedures to generate and validate multiple

signature-based evidence according to the new policy must also be specified.

The achievement of these objectives has led to the next contributions:

C1 - A taxonomy of attacks covering both the signature creation and verification

stages has been devised (see Chapter 6). The taxonomy has been designed to

include a complete and holistic set of attack categories that permits a better

10

1.3 Objectives and Contributions

understanding of the threats that may subvert the reliability of digital signature-

based evidence. The taxonomy has been complemented with a method for the

systematic classification of attacks on digital signatures.

C2 - An intensive survey and classification of attacks on digital signatures

has been performed (see Chapter 10 and Appendix B). The attacks have been

classified using the taxonomy and the method of classification, including both

practical and theoretical attacks on the generation and verification stages of di-

gital signatures.

C3 - The signature environment division paradigm has been formally presented

(see Chapter 7), including a set of mechanisms for the generation and verifica-

tion of digital signature-based evidence in a reliable manner. This paradigm is

independent of the underlying technology or the protocol in which evidence is

produced. Moreover, the proposal permits to divide the environment in as many

environments as desired. Thereby, it theoretically achieves perfect security if in-

finite environments are used, reducing the probability of a successful attack to

zero.

C4 - An extended electronic signature policy has been defined (see Chapter 8).

Using this policy, the dependences and relationships among the signatures gener-

ated in the same transaction can be established. The policy definition has been

given in ASN.1 and XML notation. Besides, the procedures to be followed by the

transacting parties, both for the generation and validation of multiple signatures

according to the policy, have been detailed. This extended policy supports, among

other things, the practical implementation of the division paradigm, stipulating

the signatures that are required to satisfy the evidence validity.

C5 - A new fair exchange protocol has been developed, using a design based on the

signature environment division paradigm and the extended electronic signature

policy. A fair exchange protocol is a protocol that ensures that no party gains

an unfair advantage over the other during the protocol execution [237]. There-

fore, either both parties obtain the expected information or none of them obtains

any useful information from the other. Additionally, these protocols have a clear

applicability in e-commerce scenarios where digital signatures are a key element

[197]. This contribution is the result of two well differentiated design stages.

In the first stage [95], the protocol, named OFEPSP (Optimistic Fair Exchange

Protocol based on Signature Policies) was conceived to oblige the parties to follow

the conditions established in a signature policy (as defined by current standards

[71, 203]). We considered that a first version fulfilling the basic properties of a fair

11

1. INTRODUCTION

exchange protocol and the novel approach of signature policies was recommended

before integrating the division principle. In the second stage, OFEPSP was im-

proved (OFEPSP+), modifying the design to comply with the division principle

and our new extended signature policy definition [98]. This is protocol presented

in Chapter 9.

The relationship between the problems detected, the research objectives stipulated

and the contributions achieved is shown in Table 1.1.

Problem Objective Contribution

P1 Lack of formal and
holistic study of the secu-
rity threats on digital sig-
natures

O1 Formal and holistic
study of the security
threats on digital signa-
tures

C1 Taxonomy of attacks
on digital signatures
C2 Survey and classifica-
tion of attacks on digital
signatures

P2 Current solutions are
not secure enough and un-
realistic assumptions are
made

O2 Robust and realistic
approach

C3 Signature environ-
ment division paradigm
C4 Extended elec-
tronic signature policy
C5 New fair exchange
protocol

P3 Limited electronic sig-
nature policy

O3 Evolve current elec-
tronic signature policy

C4 Extended electronic
signature policy
C5 New fair exchange pro-
tocol

Table 1.1: Relationship between problems, objectives and contributions

As can be seen, contribution C4 not only helps to achieve the general objective O3

but also to complete the robust and realistic approach represented by objective O2.

Similarly, C5 can be considered as a contribution where contributions C3 and C4 are

put into practice, fulfilling both objective O2 and objective O3.

The research results published in scientific journals and conferences during the de-

velopment of the present thesis are listed in Appendix A.

12

1.4 Thesis Organization

1.4 Thesis Organization

This thesis consists of several chapters distributed along five different parts:

Part I. Introduction. This part introduces the whole document, and contains the

present Chapter.

Chapter 1. Introduction. This is the present Chapter, and contains the thesis

context, the statement of the problem, the research objectives and main

contributions achieved. Also, the notation used along the thesis is given.

Acronyms, Abbreviations and Definitions. The acronyms and abbreviations

used along the thesis are contained in this section. Also, the definition of

some terms commonly used in the thesis are also given.

Part II. State of the art. This part analyses the state of the art that has a relevant

implication on this thesis. The different themes and technologies reviewed have

been organized in several chapters.

Chapter 2. Fundamentals on Digital Signatures. The fundamentals and ba-

sis for the implementation and usage of digital signatures are studied in this

Chapter, including the digital signature cryptosystem, the public key in-

frastructure, electronic signature formats, electronic signature policies and

a review of national and international legislation on electronic signature.

Chapter 3. Non-repudiation Services. This Chapter analyses the ISO/IEC

non-repudiation standard, focusing on the digital signature as non-repudiation

evidence. The Chapter also provides a brief review of fair non-repudiation

and fair exchange protocols.

Chapter 4. Taxonomies of Attacks and Vulnerabilities in Computer

Systems. In this Chapter, the efforts aimed at formalizing and classify-

ing the computer security threats are reviewed.

Chapter 5. Security Enhancing Technologies and Methods. This Chap-

ter comprises the most relevant technologies and proposals designed to en-

hance the security of computers and sensitive operations, either when digital

signatures are used or not. In any case, these technologies could be the build-

ing block for producing reliable digital signature-based evidence, and as such,

are analyzed from a critical viewpoint. The proposals have been classified

in different sections attending to the method and strategy applied.

Part III. Proposal. This part includes the proposal elaborated to fulfill the research

objectives established above.

13

1. INTRODUCTION

Chapter 6. A Taxonomy of Attacks on Digital Signatures. This Chapter

includes the taxonomy of attacks on digital signatures and the method of

classification.

Chapter 7. Division of the Signature Environment. The signature environ-

ment division paradigm is formalized in this Chapter, covering the specific

mechanisms for the generation and verification of reliable evidence under the

new model.

Chapter 8. Extended Electronic Signature Policies. The policy definition

that permits the management of multiple signatures within a single trans-

action scope is proposed in this Chapter. The Chapter also includes the

generation and verification procedures that must be followed by signers and

verifiers in order to comply with an extended signature policy defined for a

particular transaction.

Chapter 9. An Optimistic Fair Exchange Protocol based on Signature

Policies. This Chapter encloses the last proposal of the thesis: a fair ex-

change protocol based on the division paradigm and extended signature poli-

cies, named OFEPSP+.

Part IV. Evaluation and Conclusions. The evaluation of the thesis contributions

and the conclusions are given in this part.

Chapter 10. Evaluation. This Chapter contains the evaluation of the thesis

contributions:

• The evaluation of the taxonomy against the general requirements for

taxonomies, and the results obtained from the intensive survey and clas-

sification of attacks on digital signatures.

• The analysis of the enhancement of the reliability of digital signature

as non-repudiation evidence when using our division paradigm and ex-

tended signature policies proposal. The categories of attacks identified

in the taxonomy have been used as input for the analysis. Also, the for-

mal proofs that demonstrate the improvement of the division paradigm

respecting current state of the art are also given.

• A description of the experimental implementation and evaluation of the

validation algorithm of the extended electronic signature policy frame-

work and a simulator for OFEPSP+.

• A formal analysis of the security of OFEPSP+ using automated reason-

ing techniques.

14

1.4 Thesis Organization

Chapter 11. Conclusions and Future Work. In this Chapter, the conclu-

sions of this thesis are provided. In addition, future research work that may

derive from the contributions of the thesis are outlined.

Part V. Bibliography and Appendices. This part includes the bibliography used,

the scientific publications and patents derived from the research undertaken, and

a number of appendices for a better comprehension of the thesis content.

Bibliography. The bibliography contains the list of references to other research

papers, technical documents and standards used in the thesis.

Publications and Patents. In this Appendix, the papers published and patents

filed by the author within the scope of the thesis work are listed.

Classified Attacks on Digital Signatures. This Appendix includes 112 attacks

classified using the taxonomy and method of classification proposed.

Extended Signature Policy Validation Algorithm. The pseudo-code of the

validation algorithm described in Chapter 8 is given in this Appendix.

Test Cases for the Extended Signature Policy Validation Algorithm.

This Appendix contains the test cases used for the evaluation of the valida-

tion algorithm of the extended electronic signature policy framework. The

test bench used for the test cases is also detailed.

ASN.1 and XML Schemas. This Appendix describes the ASN.1 and XML

schemas for the extended electronic signature policy.

Extended Signature Policy Example for OFEPSP+. This Appendix pro-

vides an extended signature policy example written in ASN.1 that could be

applied in an e-commerce transaction that uses the OFEPSP+ protocol.

High-Level Protocol Specification Language for OFEPSP+. In this Ap-

pendix, the High-Level Protocol Specification Language (HLPSL) for the

OFEPSP+ protocol, and used for the formal analysis of such protocol, is

detailed.

15

1. INTRODUCTION

1.5 Syntax Notation

SP Signature policy used during the generation/verification of certain
digital signature-based evidence

extSP Extended signature policy used during the generation/verification
of certain multisignature-based evidence

X → Y : m Entity X sends message m to entity Y
X ← Z : d Entity X retrieves data d from a repository located at entity Z
SX (m) Digital signature of entity X generated on message m
SX (m|SP/extSP) Digital signature of entity X generated on message m under SP

and extSP conditions
SE

X (m) Digital signature of entity X generated on message m within the
boundaries of environment E

SE
X (m|SP/extSP) Digital signature of entity X generated on message m under SP

and extSP conditions and within the boundaries of environment
E

ATSt n−t n′ Time period of an absolute timing and sequence dependence
(ATS). For example, ATSt 3−t 4 means that the node represents
a signature that must be generated between t 3 and t 4). If only
ATSt n is used, then the time mark corresponds to the NotBefore
field of the ATS SigningTime type. Values of t n (NotBefore) and
t n′ (NotAfter) are represented in yyyymmddhhmmss format (e.g.
19970717000000).

∆(ss, mm, hh, dd) Maximum delta in seconds, minutes, hours and days that a relative
timing and sequence dependence can have.

16

Acronyms, Abbreviations and

Definitions

Acronym Term

ATS Absolute timing and sequence dependence
CS Counter Signature
ct commitment type
ext-SP Extended electronic signature policy
PS Primary Signature
RTS Relative timing and sequence dependence
SCA Signature creation application
SCD Signature-creation data
SCDev Signature creation device
SCE Signature creation environment
sp signature policy
SSCDev Secure signature creation device
SSi Set of signatures
SVA Signature verification application
SVE Signature verification environment
TSi Tree of signatures

Term Definition

Attack Occurrence of a threat that compromises an asset or
system resource by exploiting a vulnerability in the IT
system.
Malicious external fault that tries to provoke a service
failure.

Digital signature Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit
to prove the source and integrity of that unit and pro-
tect against forgery e.g. by the recipient.

Electronic signature Data in electronic form which are attached to or logi-
cally associated with other electronic data and which
serve as a method of authentication.

Evidence Information that either by itself or when used in con-
junction with other information is used to establish
proof about an event or action.

Non-repudiation service Service that protects the parties involved in a transac-
tion against the other party denying that a particular
event or action took place.

Proof Corroboration that evidence is valid in accordance
with the non-repudiation policy in force.

Secure signature creation de-
vice

A signature-creation device, either hardware or soft-
ware, that meets the requirements laid down in Annex
III of the European Directive.

Signature-creation data Unique data, such as codes or private cryptographic
keys, which are used by the signatory to create an
electronic signature.

Signature creation device Configured software or hardware used to implement
the signature-creation data.

Taxonomy Practice and science of classification.
System for naming and organizing things.

Threat Potential violation (accidental or intended) of the se-
curity policy of a system.

Trustworthiness Assurance that a system will perform as expected.
Vulnerability Internal fault that enables an external fault to harm

the system.

Part II

State of the Art

19

Chapter 2

Fundamentals on Digital

Signatures

In this Chapter, the fundamentals and basis for the implementation and usage of di-

gital signatures are explained. They cover the digital signature cryptosystem, the in-

frastructure that supports the usage of public key cryptography in open environments,

electronic signatures as formats that define the structure and information of digital

signatures, electronic signature policies, which permit to establish the requirements for

a signature to be deemed valid in a particular transaction context, and a brief review

of national and international legislation on electronic signature.

2.1 Digital Signatures

A digital signature is defined as “data appended to, or a cryptographic transformation

of, a data unit that allows a recipient of the data unit to prove the source and integrity

of that unit and protect against forgery e.g. by the recipient” [123].

A digital signature cryptosystem is based on public key cryptography [63], where

there is a key pair that consists of a public key, publicly known, and a private key, only

known by the signatory. Other configurations where the private key is stored in a central

key management system for key escrow and further recovery may be implemented.

However, and as stated in the thesis introduction, we only consider digital signature

schemes where the private key is intended to be controlled and known exclusively by

the signatory.

Using a digital signature cryptosystem, the signatory can generate a digital signa-

ture on certain data by using his private key. Afterwards, a relying party or verifier can

use the public key to verify the digital signature. Therefore, a digital signature based

on public key cryptography (e.g. RSA [200]) can be used to authenticate the signa-

tory as the signature is created using means that the signatory can maintain under his

21

2. FUNDAMENTALS ON DIGITAL SIGNATURES

sole control (the private key). In addition, a digital signature provides data integrity,

ensuring that any subsequent change of the signed data is detectable.

2.2 Public Key Infrastructure

In order to use digital signatures in open environments like the Internet, it is quite

advisable to have a means of identifying the signatory. Digital signatures as such are

not capable of fulfilling this need. In order to bind the identity of the owner of the key

pair with such cryptographic keys, another technology must be put in place.

The public key infrastructure (PKI) [57] was precisely designed to permit such

binding. In PKI, a digital certificate (or public key certificate) binds a cryptographic

public key with a subject identity and additional information. As a result, when the

public key embedded in a certificate correctly verifies a digital signature, the relying

party could assume that the subject whose identity is included in the certificate is the

one that generated the signature.

PKI relies on a hierarchical architecture and a strong trust-based model. A digital

certificate is issued by a Certification Authority (CA), which is the entity that asserts

the binding between the subject and the public key. Depending on the procedures and

policies followed by the CA to verify the subject’s identity and issue the certificate

(formalized in the Certification Practice Statements (CSP) [50]), relying parties will

achieve a higher or lower level of trust in such binding. The hierarchical architecture

is built from a root CA, which self-signs its own certificate, to end users certificates,

existing as many mid-level CAs in between as necessary.

A digital certificate basically includes a serial number, which is an identifier unique

within the CA scope, the subject identity, the issuer identity, the validity period, the

certificate policies of applicability, usages for which the key has been authorized and

the digital signature of the CA that issued the certificate.

The type of commitment that can be made by the signer depends on both the

transactional context and other technical considerations. The purposes for which a

certificate has been issued is one of the important technical constraints. In this sense,

the key usage defines the purpose of the key contained in the certificate. PKI specifies

in [57] the key usages a CA conforming to that standard must support. Next, the

keyUsage extension to be included in a certificate is detailed:

KeyUsage ::= BIT STRING {

digitalSignature (0),

nonRepudiation (1), -- renamed to contentCommitment

keyEncipherment (2),

dataEncipherment (3),

22

2.2 Public Key Infrastructure

keyAgreement (4),

keyCertSign (5),

cRLSign (6),

encipherOnly (7),

decipherOnly (8)

}

Some key usages imply that the signer is bound to the signed information in a

certain manner. For instance, the digitalSignature purpose is intended to be used in

authentication services, data origin authentication services, and/or integrity services.

The nonRepudiation/contentCommitment purpose means that the signer cannot later

repudiate having performed the signature. Thus, this key usage is completely needed

if the signer has to consume a non-repudiation service, or when the signature has to

legally bind the signer respecting the signed data.

Cryptographic keys have a life cycle during which they are created, used, and de-

stroyed. The same applies to digital certificates. A certificate is normally issued with

a fixed validity period. Moreover, certificates can be revoked by the owner. A revo-

cation is the procedure by which the subject terminates the validity of the certificate

before the expiration date. Various circumstances may force the subject to revoke the

certificate: change of name, change of association between the subject and the CA, and

disclosure or suspected disclosure of the corresponding private key. Revoked certificates

are usually published by the CA in a signed data structure called Certificate Revocation

List (CRL). A CRL basically contains the issuer, the date of issuance (thisDate field),

a list of revoked certificates, including, for each certificate, the serial number, the date

on which the revocation occurred, (optionally) the revocation reason, and the date by

which the next CRL will be issued (nextUpdate field).

Certificates revocation status must be accessible by relying parties in order to verify

the validity of a certificate being used for a digital signature validation. CRLs can be

reached by accessing the CRL distribution point, or using the Online Certificate Status

Protocol (OCSP) [173].

The main limitation of CRL-based revocation methods is the elapsed time since a

subject requests the certificate revocation until the CA publishes the updated CRL.

This period of time, dependent on the nextUpdate field of the CRL, is up to the policy

followed by the CA, and may vary from minutes or hours to even several days. During

that period of uncertainty, the relying party cannot be sure about the status of the

certificate. Solutions are limited to either waiting for the next update (grace period)

or using other means that assure the freshness of the certificate status (e. g. fresh

databases reached by means of OCSP protocol).

23

2. FUNDAMENTALS ON DIGITAL SIGNATURES

Current PKI standard defines the architectural model and the security and man-

agement services that support PKC within the PKI, including subject registration,

certificate issuance, key pair recovery, key pair update and revocation requests, either

following on-line protocols or off-line procedures [6]. PKI also provides the format, in

ASN.1, for X.509 certificates and CRLs [57].

As mentioned before, trust in the CA and the binding between identity and pub-

lic key is subject to the policies and procedures followed by the CA for its operation,

included in the CSP. Critical issues include the subject registration and the key pair

generation and issuance. More confidence is gained if the subject must physically

present his identity to the CA or the delegated entity (e. g. the Registration Au-

thority). Likewise, the level of trust will depend on the technical and organizational

procedures followed to generate and issue the key pair to the subject, as well as the

device inside which the key pair, specially the private key, is stored and protected.

Hardware cryptographic devices, such as USB tokens or smart cards, provide a higher

level of guarantee respecting the security of the process.

2.3 Electronic Signatures

In order to allow the exchange and verification of digital signatures, certain informa-

tion must be linked to the signature, like the digital certificate that corresponds to the

signing private key, the cryptographic algorithms used for the signature computation

or the time at which the signature was generated, among others. This information is

commonly collected into a data structure with specific format called electronic signa-

ture1.

International standardization organizations like ETSI, IETF or World Wide Web

Consortium (W3C) have delivered a number of technical standards where formats for

electronic signatures are defined. These formats include basic forms of electronic signa-

ture (ES-BES) and advanced electronic signatures (AdES) that remain valid over long

periods [74, 75]. AdES formats are grouped in CAdES [74, 187] or XAdES [59, 75], if

defined in ASN.1 [122] or XML [232], respectively. Different AdES formats have been

defined according to the additional validation information included in the electronic

signature: AdES-T (with Time reference), AdES-C (with Complete validation data),

AdES-X (with eXtended validation data) and AdES-A (with Archive validation data),

quoted from longer to shorter validity period assurance.

1Electronic signature definition under current standards differs from the definition given by current

legislation on electronic signatures, where an electronic signature is data in electronic form which are

attached to or logically associated with other electronic data and which serve as a method of authenti-

cation

24

2.4 Electronic Signature Policies

AdES formats that include additional validation information allow a relying party

to obtain a higher assurance respecting the validity of the certificate used during the

signature creation. Therefore, these formats intend to support the verification stage,

but do not positively affect the reliability of the creation stage.

2.4 Electronic Signature Policies

A signature policy is a document that collects a set of rules to create and validate

electronic signatures, under which an electronic signature can be deemed valid in a

particular transaction context [71, 203]. Thereby, transacting parties are able to de-

termine the conditions under which an electronic signature becomes binding in a given

business context.

The policy is used by the signer in order to generate the signature according to

its requirements. Afterwards, the verifier must use the policy to decide whether the

signature is valid or not. For instance, a signature policy can establish that the signature

must have been computed using specific cryptographic algorithms, and using a hardware

cryptographic device. Besides, the same policy can also stipulate that the verifier has

to timestamp the signature once previous requirements are checked.

A signature policy can be used in a wide variety of scenarios and contexts. Public

and private sectors can benefit from signature policies to delimit the requirements to be

fulfilled by the signatures that must be exchanged in their transactions. Furthermore,

transactions in which there is a legal requirement to follow a specific form, procedure or

ceremony of signing, the usage of a signature policy outlines the outer limits respecting

the application and consequences of the signatures. As an example, signatures created

solely for data origin authentication purposes can be distinguished from those created

for content approval or authorization. Therefore, a signature policy enforces the binding

feature of signatures, once the requirements that must be fulfilled by the signer and

the verifier are clearly specified. If a signature has not been generated according to the

policy established in the particular transaction, the commitment made by the signatory

is not binding.

A signature policy is focused on the technical requirements that a signature must

comply to, and, as result, the operations that both signers and verifiers must implement

during the generation and validation of the signature. The association between these

technical requirements and the transactional context in which the signatures are needed

must be externally established. For example, a government that offers services to the

citizens through electronic applications (e.g. eHealth, eTaxes, etc.) can indicate in the

corresponding Web page that a certain signature policy has to be used by the citizens

when generating their signatures. Furthermore, the users of the policies (signers and

25

2. FUNDAMENTALS ON DIGITAL SIGNATURES

verifiers) must show their consent with regard to the policy terms. Contractual or other

arrangements can be used to make the users recognize the binding nature of the policy.

The document that collects the rules of the policy can be written in an informal

text form provided that the rules of the policy are clearly identified. A formal notation

like ASN.1 [73] or XML [70] can also be used for that purpose. If only an informal

text form has been used to define the policy, then some human interaction will be

needed when generating and validating the signature against the policy requirements.

The signer would need to read the policy and compound the signature accordingly,

while the verifier would need to analyze the signature and manually evaluate the policy

requirements against the actual signature information. However, by using ASN.1 or

XML syntax for the policy specification it is possible to automatically generate and

validate compliant signatures by using suitable programs.

Basically, a signature policy contains the following information:

• An Object Identifier that uniquely identifies the policy among those issued by the

same authority.

• Information about the signature policy issuer.

• Field of application of the signature policy. It refers to legal, contractual or

application contexts in which the signature policy is to be used and the specific

purposes for which the electronic signature is to be applied.

• The signature policy validation section, which defines, for the signer, the data

elements that shall be present in the electronic signature that is generated and,

for the verifier, the data elements that shall be present for an electronic signature

to be potentially valid under that signature policy. Validation information can

be time stamps, Online Certificate Status Protocol (OCSP) responses, Certificate

Revocation Lists (CRLs), etc.

• Constraints for generating electronic signatures: use of smartcard, use and man-

agement of attribute certificates, etc.

• Constraints for electronic signatures validity generated under this signature pol-

icy: maximum validity period for the generated signature, grace period, etc.

• Commitment type that can be made by the signer in relation to the signed data:

proof of origin, proof of receipt, legal commitment, notary, witness, proof of

acknowledgment, etc.

26

2.4 Electronic Signature Policies

As commented in Section 2.2, the key usage field of a certificate defines the purpose

of the key contained in it. However, if a binding signature or non-repudiation evidence

is needed, taking into account key usage only seems to be insufficient. As allowed

by RFC 5280, a certificate can be issued for more that just one purpose, though the

standard restricts the combinations of bits that may be set in an instantiation of the

key usage extension. As a result, this extension could include both nonRepudiation

and keyAgreement bits set to ’1’. The signer could allege that he intended to use his

certificate for establishing the SSL/TLS connection with the seller’s Web site, rather

than issuing a purchase order.

Signature policies serve as the means to establish higher level of security require-

ments for the signatures of a transaction, filling the gap left by the key usage. The

signer can select the desired commitment type, and include it as a signed attribute of

the signature [74, 75]. Moreover, the signer must indicate in the electronic signature

which policy it complies to. For that purpose, a reference to the signature policy has

to be included as a signed attribute as well. The reference consists of the unique policy

identifier (OID), the hash value of the policy and the hash algorithm identifier used to

compute the hash value over the signature policy description. If a dispute arises, the

policy can be used to provide supportive evidence over the procedure associated with

a specific signature in use. Implicit references to the policy can be made as well but

the structure or semantics of the document that a user is signing must be well defined.

It is worth noting that the signature policy reference is a signed attribute inside an

electronic signature format [59, 74, 75], and therefore it is not possible to substitute

the policy used during the signature generation without invalidating such signature.

This prevents the possible situation where an attacker wants to limit the requirements

under which the signature is considered to be valid by replacing the policy by a less

demanding one.

As mentioned in [71, 203], the field of application and semantics fields define the

specific use and meaning of the commitment within the overall field of application de-

fined for the policy. As can be noticed, commitment types that can be defined in a

signature policy differ from those defined by RFC 5280 in the key usage extension. The

latter are straightforward and explicit, while, in the former, a more flexible approach

has been followed. Notwithstanding, a conceptual relationship between both sets exist.

A signature intended to bind the signer with the signed content should use a certificate

with the nonRepudiation bit set to ’1’. In the same way, the commitment type chosen

from those available in the signature policy should cover that intention (e.g. content

approval). Though not every combination of key usages and commitment types are

27

2. FUNDAMENTALS ON DIGITAL SIGNATURES

coherent, a matrix of correspondence or consistent combinations could be traced. How-

ever, as commitment types of a signature policy are context specific, this matrix should

be implemented in a case-by-case basis.

An important contribution of signature policies is that they enforce enclosing the

consequences that can be derived from a signature. Used in conjunction with appropri-

ate key usages, the signer can obtain a certain level of confidence respecting the type

of signature that is being generated.

However, the increase of paper-based processes being transposed into the digital

realm makes current signature policy definition insufficient to cope with the new needs

that arise. Very often, documents require more than one signature to give it legal

validity or to make a transaction effective. This limitation was pointed out by ETSI

in a technical report published in 2003 [72]. ETSI report studies business needs that

may need multiple signatures, and provides a foundation for further work in relation to

the technical implementation of a signature policy governing multiple signatures, and

a general guidance on a methodology for the validation of multiple signatures. ETSI

report assumes that each signature will be validated under a signature policy for single

signatures such as [73] or [70]. The challenge raised by ETSI is the specification and

validation of the relationship of each required signature against the others. At the time

of writing this thesis, no technical solution covering this need had been proposed.

2.5 Electronic Signatures from a Legal Viewpoint

The electronic signature has become a key element in the information society. Several

national and international legislations recognize the legal effectiveness of electronic

signatures and their admissibility as evidence in legal proceedings. In addition, current

legislation specifically grants electronic signatures an important role for promoting e-

commerce under secure conditions [68, 76, 154, 184, 229]

An electronic signature is defined in art. 2 of the European Directive on electronic

signatures as “data in electronic form which are attached to or logically associated with

other electronic data and which serve as a method of authentication” [76]. Authentica-

tion should be understood as a means of identifying the signatory but also indicating

the signatory’s approval of the signed data, as interpreted in the incorporation of the

Directive into the national laws by most Member States [60]. The UNCITRAL defi-

nition of electronic signature [229] also supports this statement: “Electronic signature

means data in electronic form in, affixed to or logically associated with, a data mes-

sage, which may be used to identify the signatory in relation to the data message and

to indicate the signatory’s approval of the information contained in the data message”.

28

2.5 Electronic Signatures from a Legal Viewpoint

Consequently, the electronic signature is functionally equivalent to the handwritten

signature. The signatory is legally bound respecting the commitments made in the

signed document once his knowledge and approval of the content of the document are

consciously represented by his electronic signature. The electronic signature acts as

instrument of evidence regarding the authenticity of the electronic document in the

same way as the handwritten signature does regarding the paper-based document.

The legislation on electronic signature analyzed herein is technology-neutral, as the

technical or procedural requirements for generating and verifying electronic signatures

are not specified [40]. They establish generic requirements that must be fulfilled by

the implementing technology, either present or future [76, 154, 184, 229]. An electronic

signature which conforms to these requirements (functional equivalence) will have legal

effect, no matter its nature or technical background. This model grants to market

forces the power to decide what constitutes an electronic signature.

In the Spanish Law [154] and the European Directive on electronic signatures [76],

three types of electronic signatures are defined, each one providing a different degree of

reliability. A definition for the (basic) electronic signature has already been given above.

An advanced electronic signature requires that it is uniquely linked to the signatory, it

is capable of identifying the signatory, it is created using means that the signatory can

maintain under his sole control, and it is linked to the data to which it relates in such

a manner that any subsequent change of the data is detectable. Finally, a qualified

signature is mainly an advanced one generated using a certificate that complies with

Annex I of the European Directive on electronic signatures, and a secure signature

creation device.

In this sense, and according to the European Directive on electronic signatures

[76], a signature creation device (SCDev) is configured software or hardware used to

implement the signature-creation data (SCD), being the SCD unique data, such as codes

or private cryptographic keys, which are used by the signatory to create an electronic

signature. A SCDev, either hardware or software, that meets the requirements laid

down in Annex III of the European Directive is called a secure signature creation device

(SSCDev). Annex III dictates that the SSCDev must, by appropriate technical and

procedural means, ensure at least that (a) the signature-creation-data used for signature

generation can practically occur only once, and that their secrecy is reasonably assured;

(b) the signature-creation-data used for signature generation cannot, with reasonable

assurance, be derived and the signature is protected against forgery using currently

available technology;(c) the signature-creation-data used for signature generation can

be reliably protected by the legitimate signatory against the use of others. Therefore,

SSCDev places more confidence regarding the protection of the SCD.

29

2. FUNDAMENTALS ON DIGITAL SIGNATURES

On the other hand, the Canadian Act on Personal Information Protection and

Electronic Documents [184] establishes the same requirements for a “secure electronic

signature” as those given for an advanced signature under the European Directive,

while the UNCITRAL Model Law on Electronic Signatures [229] establishes similar

requirements for an electronic signature to be reliable.

Based on the current state-of-technology, only cryptographic digital signatures sat-

isfy the aforementioned requirements for advanced or qualified signatures. In this sense,

some legislations explicitly state that a digital signature supported by a Public Key In-

frastructure (PKI) is one of the potential underlying technologies. For instance, the

European Directive refers to digital certificates and signature creation devices, and the

UNCITRAL Model Law even establishes PKI and digital signatures as an example of

implementing technologies for generating compliant signatures.

A qualified electronic signature is legally equivalent to a hand-written signature,

complying with the formal requirements established for the latter. The European Di-

rective indicates that these electronic signatures “satisfy the legal requirements of a

signature in relation to data in electronic form in the same manner as a handwritten

signature satisfies those requirements in relation to paper-based data”. Notwithstand-

ing, electronic signatures not considered as qualified are legally recognized as well ac-

cording to the European Directive and the Spanish Law. Article 5.2 of the Directive

says that “Member states shall ensure that an electronic signature is not denied legal

effectiveness and admissibility as evidence in legal proceedings solely on the grounds that

it is in electronic form, or not based upon a qualified certificate, or not based upon a

qualified certificate issued by an accredited certification-service-provider, or not created

by a secure signature-creation device”.

The main difference between qualified signatures and the rest is the potential evi-

dential value. In legal proceedings, a qualified electronic signature, under the provision

of the European Directive and within the European boundaries, is given a favorable

validity judgment a priori (ex ante) as it is considered the most reliable form of signa-

ture. On the contrary, the basic and advanced electronic signatures need a posteriori

(ex post) judgment by the Court, as their reliability is assured to a lesser extent [60].

That means that, if it is proved that the signature is a qualified one, the alleged

signatory must provide evidence that questions, beyond reasonable doubt, its security

in case its authorship, and thus of the signed document, is repudiated. The onus of

proof is legally reversed, moving the burden of proof to the alleged signatory instead of

to the verifier [167]. In case of a basic or advanced signature, the alleged signatory is

also capable of repudiating the authorship but it is the other party the one who must

provide evidence that support the reliability of the signature.

30

2.5 Electronic Signatures from a Legal Viewpoint

Some authors make the assumption that the qualified signature is given a iuris tan-

tum presumption of authenticity [60], that is, the alleged signatory is given the chance

to provide evidence that contradicts the established presumption of authenticity of the

signature. The situation would be different if the presumption of authenticity followed

the iuris et de iure principle, supported by other authors, and that implies that the

alleged signatory is not given the chance to refute the authenticity of the qualified

signature. Here, the alleged signatory is automatically assumed to be the actual sig-

natory, having to deal with the consequences always. For example, the UNCITRAL

Model Law on Electronic Commerce [229] indicates that a receiver is entitled to regard

a data message as being that of the originator, and to act on that assumption, if, in

order to ascertain whether the data message was that of the originator, the receiver

properly applied a procedure previously agreed to by the originator for that purpose

(e.g. use of certain type of electronic signature). Also, the Digital Signature Guidelines

of the American Bar Association [107] refers to the equitable principles as a means to

not give the signatory the chance to repudiate the signature. In the Spanish context,

the unclear presumption of authenticity given in article 3.8 of 59/2003 [154] for quali-

fied signatures has been clarified in the Spanish Law 56/2007 [154], granting the iuris

tantum approach.

If the technology used to produce the electronic signature is based on digital sig-

natures, and a digital certificate issued within a PKI is owned by the signatory, then

the certificate revocation could limit the liability derived from such signature. Four

possibilities exist regarding the phases inherent in the revocation process [175]1:

• The private key has been compromised but the certificate revocation has not been

requested yet. It may be either because the owner does not suspect of the key

compromise or, if he did, he has not sent the revocation request to the Certifica-

tion Authority (CA) yet. In this case, since the owner of the certificate is obliged

to securely keep the signing key, he would have to take on the responsibilities.

Art. 22 and art. 23 of 59/2003 [154] exonerate the CA from any liability if the

owner did not guarantee the confidentiality and access to the signing key dili-

gently, or did not notify the key compromise when suspected. As commented by

Cruz in [60], the principle of risk distribution has its own particularities in the

electronic signature field, and under the Spanish legislation. It is mentioned that,

due to the strong security measures granted to a qualified signature, the judge

could assume that the signing key must have been compromised only due to a

1It should be mentioned that this analysis was performed by Nadal et al. on the Spanish “Real

Decreto 14/1999 de firma electrónica”, dated from 1999, and that preceded the current 59/2003 Law.

Therefore, some conclusions given therein may not be accurate respecting the content of 59/2003.

31

2. FUNDAMENTALS ON DIGITAL SIGNATURES

negligent behavior of the owner. It is suggested that the alleged signatory would

have to either be bound to the document content (attribution of data message)

or deal with the damages caused to the relying party. However, this conclusion

will have to be inevitably achieved by the Tribunal on a case by case basis.

• The owner has sent the revocation request to the CA, but it has not been pro-

cessed yet or, though processed, the new status has not been made available yet.

The inevitable uncertainty period between the revocation request and the mo-

ment at which such revocation is made effective shifts the risk assumption to the

CA, according to art. 22.3 of 59/2003.

• The revocation status has been made effective and published, but the relying

party is not capable of accessing it. If the reason is related to the scheduling for

the actual publication of the certificate status, then the liability will be assumed

by the CA. Otherwise (e.g. the relying party had no connection to the publication

service at certain moment but due to an internal problem), the liability will be

assumed by the relying party.

• The revocation status is updated and made available to any relying party. In this

case, the certificate revocation list is updated and accessible. Therefore, art. 23.4

of 59/2003 shifts the liability to the relying party.

32

Chapter 3

Non-repudiation Services

This Chapter briefly reviews the ISO/IEC model for non-repudiation services, specifi-

cally those based on digital signatures. Also, two particular types of protocol, named

fair exchange and fair non-repudiation protocols, and that use non-repudiation services,

are explained.

3.1 General Model for Non-repudiation Services

According to ISO/IEC 13888-1 [112], a non-repudiation service protects the parties

involved in a transaction against the other party denying that a particular event or ac-

tion took place. Non-repudiation services permit to design protocols and applications

where strong commitments are made between the participant entities. Electronic com-

merce protocols or e-Government services are among those scenarios that must protect

the entities against fraud and misbehavior. In non-repudiation services, digital evi-

dence permit to enforce the responsibility that each entity takes on in the transaction,

avoiding a further successful repudiation of the commitments made.

Non-repudiation services are built based on non-repudiation mechanisms that pro-

vide protocols for the exchange of non-repudiation tokens specific to the service. Be-

cause there is a wide variety of commitments that can be made by the transacting

parties, so are the non-repudiation services that have been standardized. According to

[112], the next non-repudiation services may be provisioned:

Non-repudiation of creation, intends to protect against an entity’s false denial of

having created the content of a message.

Non-repudiation of sending, intends to protect against the sender’s false denial of

having sent a message.

33

3. NON-REPUDIATION SERVICES

Non-repudiation of origin, intends to protect against the originator’s false denial

of having created the content of a message and of having sent a message, covering

both non-repudiation of creation and non-repudiation of sending.

Non-repudiation of receipt, intends to protect against a recipient’s false denial of

having received a message.

Non-repudiation of knowledge, intends to protect against a recipient’s false denial

of having taken notice of the content of a received message.

Non-repudiation of delivery, intends to protect against a recipient’s false denial of

having received a message and recognized the content of a message, covering both

non-repudiation of receipt and non-repudiation of knowledge.

Non-repudiation of submission, intends to provide evidence that a delivery au-

thority has accepted a message for transmission.

Non-repudiation of transport, intends to provide evidence for the message origi-

nator that a delivery authority has delivered a message to the intended recipient.

In [112], ISO/IEC defines a general model for non-repudiation mechanisms provid-

ing evidence based on cryptographic check values generated using symmetric [113] or

asymmetric [114] cryptography techniques. Under this model, evidence is generated,

collected, maintained, made available and verified by non-repudiation services in order

to resolve disputes about the occurrence or non occurrence of a certain event or action.

Evidence is information that either by itself or when used in conjunction with other

information is used to establish proof about an event or action. Proof is the corrob-

oration that evidence is valid in accordance with the non-repudiation policy in force.

Though evidence does not necessarily prove the truth or existence of something, it con-

tributes to the establishment of such proof. On the other hand, the non-repudiation

policy is whatever set of criteria for the provision of the non-repudiation service, that

is, the set of rules to be applied for the generation and verification of evidence and for

adjudication. In particular, ISO/IEC 13888-1 establishes that, prior to the generation

of evidence, the evidence generator has to know which non-repudiation policy is accept-

able to the verifier(s), the kind of evidence that is required and the set of mechanisms

that are acceptable to the verifier(s). Thereby, and when using digital signatures as

evidence, electronic signature policies, as defined in Section 2.4, can be used as the

applicable non-repudiation policy.

Zhou [238] formerly established the specific properties that non-repudiation evidence

should fulfill. In particular, the origin and integrity of the evidence must be verifiable

by a third party, and the validity of the evidence must be undeniable. As commented

34

3.2 Non-repudiation Using Digital Signatures

by Zhou in [238], non-repudiation is related to authentication but has stronger proof

requirements.

A non-repudiation token, which is the information actually exchanged in a particular

non-repudiation service, includes the evidence itself and, optionally, additional data.

ISO/IEC general model defines three types of non-repudiation tokens:

Generic non-repudiation token (GNRT), which can be used in many non-repudiation

services.

Time-stamping token (TST), generated by a Time-stamping Authority (TSA), and

which establishes evidence regarding the time at which the token was generated.

This token is needed in case the clock provided by the entity generating evidence

cannot be trusted.

Notarization token (NT), generated by a notary authority, and which provides ev-

idence about the properties of the entities involved and of the data stored or

communicated.

During the provision of a non-repudiation service, at least one non-repudiation

token derived from the GNRT must be generated. Additionally, TST and/or NT can

be generated and used to verify such token.

A trusted third party (TTP), which is an entity trusted by the entities involved in

the service provision, may be necessary during the protocol execution. For instance,

TST and NT are tokens that need a TTP for their generation. The degree of participa-

tion of the TTP during the evidence exchange varies, existing TTPs that intervene in

every message transmission (inline), only in certain transmissions (online), or just when

a protocol interruption or entity misbehavior occurs (offline) [115]. Depending on the

type of evidence being produced and the TTP involved in the non-repudiation service,

the evidence generation, transfer, storage, retrieval and verification phases differ.

3.2 Non-repudiation Using Digital Signatures

A digital signature is defined by ISO/IEC 13888-1 [112] as data appended to, or a

cryptographic transformation of, a data unit that allows the recipient of the data unit

to prove the source and integrity of the data unit and protect against forgery e.g. by

the recipient. In [114], a digital signature is further defined as a non-repudiation token

generated using asymmetric techniques, and that is exchanged during a protocol and

which can be used subsequently, by disputing parties or by an adjudicator, to arbitrate

in disputes.

35

3. NON-REPUDIATION SERVICES

Digital signatures supported by a public key infrastructure can actually behave as

non-repudiation evidence as they guarantee 1:

• A binding between the public key used to verify the signature and the identity of

the signer, by means of a digital certificate issued by a trusted authority. Thereby,

the origin of the evidence (authenticity) is verifiable by the relying party.

• Due to the cryptographic properties of digital signatures, any modification of the

signed information or the signature itself is detected, assuring the integrity of the

evidence and the signed information.

• The originator of the signature (the signer) cannot later repudiate the authorship,

since he is the only one that (theoretically) knows the private key.

The digital signature must be verified in conjunction with the signed information,

the validity of the signature must be satisfied, and the digital certificate must be valid at

the time the signature was computed. When these requirements are met, the evidence

is considered as valid. Consequently, a digital signature acting as non-repudiation

evidence and that is correctly verified according to the particular non-repudiation policy

is suffice to resolve a possible dispute, avoiding the alleged signatory to successfully

repudiate the commitment made in the transaction.

A digital signature acting as non-repudiation evidence can be generated:

• By the evidence subject, that is, the entity responsible for the action, or associated

with the event, with regard to which evidence is generated.

• By a TTP on behalf of the evidence subject or an evidence requester.

• By a TTP on its own. In this case, the TTP could be the evidence subject (e.g.

when acting as a delivery authority) or an entity acting as a notary or monitor-

ing authority that provides evidence about the entities involved and data stored

or communicated between the entities, or evidence about what was monitored,

respectively.

In the same way, a digital signature acting as non-repudiation evidence can be

verified by any of the next entities but using the public key certificates and certificate

revocation lists which were all valid at the time the evidence was generated:

• By the evidence user, that is, the entity that uses non-repudiation evidence.

• By a TTP acting as evidence verification authority, and which is invoked by the

evidence user.
1Chapter 2 provides detailed information about digital signatures and related technology.

36

3.3 Fair Non-repudiation and Fair Exchange Protocols

In case of identity-based signatures, the public system parameters needed to verify

the signature can also be obtained from the trusted authority along with the signer’s

identity.

It should be mentioned that advanced electronic signature formats (AdES) that in-

clude the signature policy reference (see Chapter 2) and a time reference (AdES-EPES-

T) are suffice to fulfill the requirements imposed by ISO model on non-repudiation for

generic non-repudiation tokens (GNRT) [112] and non-repudiation tokens specific to

the service being provided (non-repudiation of origin tokens (NROT), non-repudiation

of delivery tokens (NRDT), non-repudiation of submission (NRS) tokens and non-

repudiation of transport (NRT) tokens) [114]. Therefore, an electronic signature with

such format can be considered as a non-repudiation token that includes non-repudiation

evidence. The purpose of such evidence will depend on the commitment type to which

the signer adheres (see Section 2.4), and the non-repudiation service to be provided.

3.3 Fair Non-repudiation and Fair Exchange Protocols

The growth of the e-commerce has allowed companies and individuals to sell and pur-

chase almost any kind of product and service through the Internet in a fast, comfortable

and effective manner. The main operational modes are B2C (Business to Customer)

and B2B (Business to Business). In the former case the buyer is an individual while in

the latter is another company. Although the context is different, in both cases the aim

is the same: to purchase a product or service (resource).

Such a purchase implies an electronic transaction. Next, an example of the stages

needed for a B2C transaction is described:

1. First of all, the buyer selects the resource to buy.

2. Later, the buyer has to send his credit card information to the seller.

3. During next stage a payment gateway is used for communicating with buyer and

seller’s banks, and for carrying out the charge process [69, 211].

4. Finally, the seller notifies the buyer about the transaction result.

Once the transaction is finished, and depending on the purchase conditions and

the resource nature, the buyer obtains either the resource itself or an acknowledgment

of receipt. As an example for the first case, purchasing stream content may allow the

buyer to start receiving the resource as soon as the transaction is successfully completed.

In the second one, the acknowledgment of receipt is the only element the buyer has

for making a future complaint. This acknowledgment of receipt acts as a proof of

37

3. NON-REPUDIATION SERVICES

the performed electronic transaction. In e-commerce context, this acknowledgment of

receipt may be an electronic invoice.

However, possessing certain information does not always imply a contractual or

legal commitment. It is possible for the buyer to auto-generate acknowledgments of

receipt or even for the seller to charge as many purchases as desired, once buyer’s

credit card information is known. Thereby a buyer could reject having participated in

an electronic transaction or the seller could not send the resource to the buyer if he

suspected that a fraudulent operation was carried out.

Evidence is used for resolving this previous problematic situation. Evidence is

generated during the transaction, and obliges both buyer and seller to make a certain

commitment. Additionally, evidence built using electronic signatures are granted legal

effectiveness, acting as an instrument of evidence in legal proceedings, as analyzed

in Section 2.5. For example, in [11], evidence is used in several e-commerce protocols

proposals. In one of these protocols, the buyer generates evidence on the order and bank

account information, while the seller does it on the acknowledgment of receipt. Due

to the nature of the evidence, and according to current standards on non-repudiation,

the commitment cannot be successfully repudiated. Therefore, the buyer makes a

commitment to paying the agreed price for the resource while the seller makes it to the

resource delivering. And no one could, in a future dispute, successfully reject having

made those commitments.

Nevertheless, the mere evidence generation does not completely resolve the problem.

Due to the division of an electronic transaction into several stages, as seen in the B2C

example above, the seller could obtain the evidence from the buyer without sending

the corresponding one. For being a complete fair exchange process, evidence must tie

down both buyer and seller on an equal footing. Thereby, none of them could gain an

advantage over the other during the protocol execution.

Several solutions have been proposed in the literature to address fair exchange in

e-commerce [197]. These protocols are known as fair exchange protocols. Asokan, in

his thesis [11], undertakes a profound research on fairness and non-repudiation in e-

commerce, reviewing the properties of these protocols and focusing on the design of a

generic payment service. In [197], several fair exchange protocols are analyzed, even

from the early gradual exchange protocols. On the other hand, Bao et al. [23] propose

a new cryptographic primitive called CEMBS (Certificate of Encrypted Message Being

a Signature), and from which different fair exchange protocols are built. Conditional

digital signatures are proposed by Lee and Kim [149] as the key element of the fair

exchange protocol design.

Fair exchange protocols also try to assure the timeliness property [11]. Strong

timeliness is defined by [188] as the property by which, “at any moment in an ongoing

38

3.3 Fair Non-repudiation and Fair Exchange Protocols

protocol run, an honest party P can be sure that the protocol will be automatically

completed at a certain point in time. If any action is required from P, it should be

clearly stated, as well as the circumstances in which it should be taken. At completion,

the state of the exchange is either final or any further changes to the state will not

degrade the level of fairness achieved by P”.

The design of fair exchange protocols slightly differs from those known as fair non-

repudiation protocols [51, 142, 234, 237], where the exchanged information is, in fact,

the non-repudiation evidence. While in a fair exchange protocol both buyer and seller

know the items to be exchanged before executing the protocol (e.g. e-commerce sce-

nario), in a fair non-repudiation protocol the recipient of a message does not expect a

particular message, knowing it only at the end of the protocol [142].

However, both fair exchange and non-repudiation protocols share a common aspect:

the existence of an entity trusted by both players and that participates during the

protocol for assuring the fairness and timeliness. This entity is called Trusted Third

Party (TTP), and, as demonstrated by Pagnia and Gärtner in [181], it is impossible

to achieve fairness without a TTP. Depending on the degree of involvement of the

TTP during the protocol execution, it is considered inline, online or offline. Offline

TTPs improve the performance of the protocol in normal executions. Protocols that

incorporate an offline TTP are called optimistic [12, 141, 179], and assume that both

players will not misbehave, requiring the participation of the TTP only when this

assumption is broken by any of the players.

39

3. NON-REPUDIATION SERVICES

40

Chapter 4

Taxonomies of Attacks and

Vulnerabilities in Computer

Systems

This Chapter reviews some relevant taxonomies and formal classifications of attacks

and vulnerabilities in computer systems proposed along the last decades. Those studies

focused on digital signatures are of special interest, although others are also covered

if useful information can be extracted from them. On the contrary, many taxonomies

specific to certain areas of knowledge, like intrusion detection systems, network security

or Web servers have not been considered, since they do not provide useful information

for the purpose of this thesis. A brief introduction to the taxonomy concept is given

first. The remainder of the Chapter focuses on proposals coming from the academia

and expert bodies.

4.1 Introduction

Taxonomy, from the Greek axis (’order’, ’arrangement’) and nomos (’law’ or ’science’),

is the practice and science of classification. A taxonomy or taxonomic scheme is a

system for naming and organizing things, especially plants and animals, into groups

which share similar qualities (Cambridge Dictionary).

A taxonomy is useful for the classification of the knowledge (specimen) of a partic-

ular field. Thereby, by applying a systematic and rigorous analysis, that knowledge can

be classified into a set of well defined categories. From a general viewpoint, the benefits

of a taxonomy are multiple. A taxonomy permits splitting a complex phenomenon into

more understandable pieces of information. As a result, a taxonomy makes further

studies possible, providing a common agreed base, and identifying the parts of the

41

4. TAXONOMIES OF ATTACKS AND VULNERABILITIES IN
COMPUTER SYSTEMS

phenomenon that are less known. And, using the classification of the taxonomy, one is

more capable of explaining observed phenomena.

Several taxonomies targeting the security area in computer science have been pro-

posed during the last years [106]. The fields of interest vary, covering Intrusion De-

tection Systems [18], vulnerabilities and computer programs flaws [35, 36, 143, 186],

software attacks at application level [146], computer security intrusions [155], network

security [90], attacks on secure devices [196], and many others.

Two perspectives can be chosen when approaching security threats with a taxon-

omy. A perspective focused on the vulnerability exploited in the attack or another one

based on the attacker’s method. Since software vulnerabilities comprise the majority of

security problems a computer system may have, analyzing the causes of software vul-

nerabilities can provide a tool to software developers to build more robust applications

and systems. On the other hand, understanding the methods used by the attackers to

exploit vulnerabilities permits to implement adequate security countermeasures, so a

taxonomy of attacks may be useful as well.

4.2 The Dimension Approach: Lindqvist and Johsson’s

Taxonomy and Others

A dimension is a property or attribute that permits a classification of an attack or

a vulnerability to take a more holistic view of such an event. Each vulnerability or

attack can be split into several properties. Each property is then used to classify such

an event from a different perspective (e.g. source of the attack, method of the attack,

result of the attack, etc.), all of them complementary as a whole. Each author has

chosen different dimensions according to the goal of the taxonomy and the approach

followed for the classification.

Lindqvist and Johsson introduced the concept of dimension in their early paper

[155] to classify computer security intrusions. In particular, Lindqvist and Johsson

make a classification from the system’s owner viewpoint, focusing on the external ob-

servations of attacks and breaches which the system owner can make. Consequently,

they define two dimensions, called intrusion techniques and intrusion results, each of

which is refined in different categories and subcategories.

The dimension concept is similar to the characteristics approach used by Landwehr

et al. in [143] to classify computer program security flaws according to the genesis,

time of introduction and location of the flaw.

In [34], Bishop performs a taxonomy of Unix system and network vulnerabilities,

introducing the concept of axis, which conceptually follows the same approach as a

dimension. In his taxonomy, the vulnerabilities are classified attending to six axes:

42

4.3 CEN’s Classification of Threats on Signature Creation Applications

nature of the flaw, time of introduction of the vulnerability, exploitation domain, effect

domain, minimum number of components necessary to exploit the vulnerability and

source of identification of the vulnerability. In [36], Bishop carries out a critical analysis

of the studies and taxonomies of vulnerabilities proposed till the mid ’90s. Bishop’s

work is interesting since he raises awareness respecting the difficulty of designing a

well-formed taxonomy, specially respecting the mutually exclusive and non-ambiguity

requirements that a taxonomy should fulfill.

Howard and Longstaff designed a process-driven taxonomy where multiple factors

(attackers, tool, vulnerability, action, target, unauthorized result, objectives) are used

for classifying security incidents [103]. A fixed number of categories is given for each

factor. An incident is thus classified according to the category selected in each factor.

More recently, Lough [158] used dimensions in his taxonomy named VERDICT (Val-

idation Exposure Randomness Deallocation Improper Conditions Taxonomy), propos-

ing four characteristics to classify an attack: improper validation, improper exposure,

improper randomness and improper deallocation.

4.3 CEN’s Classification of Threats on Signature Creation

Applications

CEN CWA 14170 stipulates in [46] a detailed set of security requirements and recom-

mendations for signature creation applications (SCA) that generate advanced electronic

signatures by means of a hardware signature-creation device (SCDev).

The requirements are grouped attending to the functional component of the SCA

that shall implement them. Each requirement is derived from the analysis of the cor-

responding security threat, for which a title and description are given.

CEN document provides an exhaustive work that covers an extensive list of the

attacks on the signature generation stage. However, the analysis is limited to advanced

signatures generated by means of a hardware SCDev, not including potential attacks

on signatures generated with software SCDevs, and which have legal effectiveness as

well.

Unfortunately, the general guidelines provided by CEN in the analog document for

electronic signature verification applications [47] does not follow the same approach.

CEN CWA 14171 does not include any reference to potential attacks on the verification

stage, leading to an incomplete categorization of threats on digital signatures.

43

4. TAXONOMIES OF ATTACKS AND VULNERABILITIES IN
COMPUTER SYSTEMS

4.4 Hill’s Taxonomy of Attacks on XML Signatures

A taxonomy of attacks on XML signatures is given in [102]. The goal of the tax-

onomy is to enumerate and categorize specific attacks on signatures that follow the

XML signature and encryption standard. The author identifies seven categories of

attacks, attending to the applied method: C14N Denial of Service (with one subcate-

gory), transform injection (further split into three subcategories), hash collision attack

against signedInfo with “C14N with comments”, external reference attacks, reference

complexity, element wrapping attacks and untrusted keys. The study also considers

four attack surfaces, including canonicalization, reference resolution, key resolution and

signature evasion.

Each attack category is described in terms of the involved attack surface, the impact

of the attack, a textual description of the attack, an explanation of the exploit scenario

and possible countermeasures.

Though the taxonomy is useful to prevent these specific attacks, it fails to provide a

holistic view of attacks on digital signatures. It should be noted that none of the attack

categories is focused on subverting the reliability of the signature generation. Also, the

specificity of the attacks makes that other types of signatures (e.g. raw digital signa-

tures, ASN.1 signatures, PDF signatures) fall out of the scope of the study. Moreover,

it is not explained how an attack should be classified according to the taxonomy.

Additionally, most attack categories are aimed at achieving a denial of service

attack, and thus not undermining the signature reliability but the signature verification

capability. Others are conceived as a former attack from which executing secondary

attacks, like arbitrary code execution, and consequently do not pursue subverting the

signature verification either.

4.5 Kain’s Taxonomy

Kain proposed in his Master Thesis [131] an outline of taxonomy for dynamic content

attacks on electronic signatures. The taxonomy contains three main high-level cate-

gories: hidden parameters, fraudulent content and nature of change. Each analyzed

attack is classified according to a subcategory from each high-level category.

Four different subcategories of attacks are outlined according to the hidden param-

eters the attacker could use to construct malleable documents that are to be digitally

signed: time, viewer data, viewer action and remote control.

Kain suggests two different types of attacks depending on the moment when the

fraudulent content is established by the attacker. In a pre-signature attack, the alter-

nate content must be fixed at the time the signature is applied; in a post-signature

44

4.6 Rae and Wildman’s Taxonomy

attack, the alternate content may be chosen at some point after the signature has been

applied.

Finally, nature of change category includes three subcategories: static content, dy-

namic content, and, finally, dynamic content and signature. A static content attack is

an attack where viewing alternate content does not change the working object. On the

contrary, a dynamic content attack requires the working object to be modified as part

of displaying alternate content. It is only effective when the signature is verified against

the original object. The last subcategory, dynamic content and signature, implies that

the signature is changed at the same time the content of the object does, possibly by

shipping pre-established object-signature pairs.

As mentioned by the author, the taxonomy is not complete. The author exclusively

focused on attacks that can vary the semantics of the signed document. Therefore,

many other types of attacks on electronic signatures are not considered in his study.

4.6 Rae and Wildman’s Taxonomy

In [196], Rae and Wildman propose a matrix-based taxonomy for attacks on secure

hardware devices. The matrix is dimensioned by the access required by the attacker and

the action taken by the attacker. The access required is refined in four categories graded

from the gravest scenario to the softest one: the attacker can manipulate the device

at will, including subjecting the device to sophisticated scanning, or even modifying

the device; the attacker can handle the device, manipulating the environment (e.g.

inputs to the device) but without breaking tamper seals; the attacker can approximate

the device, monitoring external characteristics, but cannot touch it; and, finally, the

attacker can just communicate with the device through available network interfaces.

On the other hand, the action dimension is split into four categories: recover a key,

defeat authentication, avoid authentication and deny service.

Once a cell of the matrix is selected, the attack is further analyzed based on the

consequence of the attack and method used for the attack. As a result, four properties

are used to classify attacks under their taxonomy.

This taxonomy is interesting and broad regarding the security threats that may

affect a signature creation device like a smart card. One of the attacks covered in

this taxonomy, called side-channel attack, has been extensively studied in the litera-

ture [224]. However, due to the heterogeneity and dependencies such attacks have on

the internal algorithms, the device attacked and the technique applied, no complete

taxonomy has been presented so far. Other researchers have studied attacks and vul-

nerabilities in smart cards that may contain cryptographic material, such as private

45

4. TAXONOMIES OF ATTACKS AND VULNERABILITIES IN
COMPUTER SYSTEMS

keys for signing purposes [84]. Notwithstanding, such a specialization, though neces-

sary, implies that many other attacks on digital signatures are not covered in this type

of taxonomies.

4.7 Hansman and Hunt’s Taxonomy

Blended attacks are attacks that target several vulnerabilities simultaneously. As a

result, a classification of a blended attack is difficult if a strategy different than a

dimension-based one is followed in the taxonomy [91].

In [91], Hansman and Hunt provide a specific dimension-based taxonomy aimed

at dealing with this sort of attacks, and which was intended to be the first taxonomy

that gave a holistic approach to classify attacks, taking into account all parts of the

attack. The authors also analyze different designs of a taxonomy, concluding that a

dimension-based taxonomy is preferable to other designs based on trees or flat-lists.

Hansman and Hunt’s taxonomy uses four dimensions. The first one covers the attack

vector and behavior. The second dimension focuses on the attack targets. Multiple

entries can be selected from this dimension, as an attack may have multiple targets. The

third dimension deals with the specific vulnerability that allows the attack to be carried

out. Like in the second dimension, more than one vulnerability can be selected for the

same attack. The authors mention that entries in this dimension are usually Common

Vulnerabilities and Exposures (CVE) entries [55], though others may be created. The

last dimension classifies attacks having payloads or effects beyond themselves.

By selecting a category belonging to the first dimension in the fourth one, the

authors intended to permit the classification of attacks that launched other attacks.

However, the iterative process is not possible with their method of classification, and

thus only a “second round” with less information than the first attack can be described.

As a result, blended attacks are, in practice, hardly classifiable under their taxonomy.

Furthermore, in our opinion, providing an exhaustive list of vulnerabilities is useless

in a taxonomy, since a vulnerability is always specific to a certain version of a piece of

software, and taxonomies should provide solutions of general applicability. Projects like

the CVE [55] or the National Vulnerability DataBase [177] give detailed descriptions

of known vulnerabilities. The information is publicly available in the form of a catalog

of vulnerabilities. However, no comprehensive schema or classification taxonomy is

usually given. On the contrary, search tools consist of keywords search or alphabetic

ordering.

46

4.8 The Common Attack Pattern Enumeration and Classification

4.8 The Common Attack Pattern Enumeration and Clas-

sification

The Common Attack Pattern Enumeration and Classification (CAPEC) [52] is an ini-

tiative developed by MITRE Corporation and sponsored by the Department of Home-

land Security of the United States of America. CAPEC collects a large set of attack

patterns. An attack pattern is defined as an abstraction mechanism for describing how

a type of observed attack is executed. It is the description of a common method for

exploiting software from the attacker’s perspective. The attack patterns contained in

CAPEC databases are generated from in-depth analysis of specific real-world exploit

examples, and are publicly available.

CAPEC contains five different views, where the most interesting one is the Methods

of Attacks View. In this view, the attack patterns are classified in accordance to the

method followed by the attacker. In particular, the information concerned to an attack

pattern includes a summary of the pattern, an attack execution flow, the prerequisites

that must exist for the attack to be executable, the methods/vectors of the attack,

the attacker skills or knowledge required, solutions and mitigations, related Common

Weakness Enumeration (CWE) [56] and Common Vulnerabilities and Exposures (CVE)

[55], and confidentiality, integrity and availability impact, among others.

47

4. TAXONOMIES OF ATTACKS AND VULNERABILITIES IN
COMPUTER SYSTEMS

48

Chapter 5

Security Enhancing Technologies

and Methods

Since attacks on computers began to appear, researchers have been proposing solutions

to counteract them or at least minimize their impact. In this Chapter, a critical review

of the state of the art of relevant security enhancing proposals is given. Some proposals

are explicitly focused on the signature generation problem while others were designed

for other purposes, though they may be of applicability to enhance the reliability of

digital signatures as well. The proposals have been classified attending to the method

and strategy applied. Others with no similarity with any category have been collected

in Section 5.10.

5.1 Security Assurance by Objective Evaluation

An objective evaluation comprises the procedures to assess that an IT product and/or

the underlying operational system and environment reduce all security risks identified

by risk assessment as unacceptable to a level that can be tolerated as residual risks. As

a result, the strength of the implemented security mechanisms must suffice to counter

the identified threats taking into account the expected attack potential.

The Common Criteria (CC) [53, 116] provides a common framework for the evalu-

ation of the security functionality of IT products. The CC provides a common set of

security functional requirements [117] that can be used by the developer to specify the

security functionality implemented by the product. Additionally, the CC also provides

a set of security assurance requirements [118] to be fulfilled by the developer during

the design, implementation and test of the product, and by the evaluator during the

security evaluation process, established in the Common Methodology for Information

Technology Security Evaluation [54, 119]. This evaluation process provides confidence,

49

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

in terms of Evaluation Assurance Level (EAL), in that the security functionality of the

product and the assurance measures applied to it meet the established requirements.

Higher levels of assurance place more detailed requirements on the content and

presentation style of evidence to be provided by the manufacturer. In the same way,

higher assurance usually requires increasing rigor of analysis of the evidence by both

the developer and the evaluator. Notwithstanding, the achieved level of assurance is

a grade of confidence respecting the product security, not a certain level of security.

Obviously, the higher the level of assurance is, the more confidence is gained in its

actual security. However, the cost and complexity of the process considerably increases

with the level of assurance to achieve, so few manufacturers conduct this evaluation or

merely achieve low levels.

Within the CC terminology, a Protection Profile (PP) is an implementation inde-

pendent statement of security needs for a particular type of product. A PP serves as

the document where end users, organizations, governments, etc. define the security

requirements to be fulfilled by the type of products the PP is targeting. Later on, a

manufacturer can put a product under CC evaluation, and in which the requirements

of a certain PP of interest will be considered. Particularly, four PPs have been defined

in Spain for electronic signature related products, two of them establishing the secu-

rity assurance requirements for an EAL1 [190, 192], while the other two for an EAL3

[191, 193]. They are oriented to signature creation and validation applications where

the Secure Signature Creation Device (SSCDev) being used corresponds to the Spanish

electronic identity card (eDNI). Notwithstanding, their design could be reused for any

type of SSCDev conforming to the Protection Profile described in [45].

PPs [190] and [191] focus on applications with exclusive control over the interfaces

that interact with the signer (e.g. PDA, smart phone, etc.) while [192] and [193] con-

sider that the application is running in a general-purpose platform that provides those

interfaces (e.g. a Personal Computer). In the latter, the platform provides the hard-

ware and supplementary software layers (e.g. operating system, driver to communicate

with the SSCDev, external applications running with user or root privileges, etc.). The

document to be signed can be provided by external entities or by the signer herself by

using the interfaces available in the platform.

However, these PPs assume that the platform is trustworthy, and must be configured

and managed accordingly:

“The vulnerabilities that are exploitable through the environment of the application

[...] must be eliminated by means of an appropriate platform configuration and a cor-

rect usage. How the platform must be configured in order to not permit an attacker

compromise the assets herein described is a hard task, out of the scope of this PP”.

50

5.1 Security Assurance by Objective Evaluation

In a nutshell, the PP authors do not include the security requirements that the

platform on which the signature application has to be executed must fulfill. In CC

terminology, it belongs to the environment, on which can be made as many assumptions

as desired. Based on the EAL considered by those PPs and the assumptions made, a

signature application would only be certified according to the requirements therein

contained considering a secure underlying platform and a low attack potential. It is

clearly a not realistic scenario.

These PPs also include some security functional requirements for the secure repre-

sentation of the document to be signed, what includes detecting any active, hidden or

malicious dynamic content inserted in the document. These requirements are intended

to fulfill the What You See Is What You Sign (WYSIWYS) property [207]. WYSI-

WYS is a security measure that provides the signer with a last step verification by

means of a graphical or textual representation of what is going to be signed. Once

the signer confirms it, the displayed information is the one supposed to be sent to the

signature creation device (e.g. smart card) and therefore the information on which the

digital signature is computed. However, several attacks have been demonstrated effec-

tive to defeat WYSIWYS state-of-the-art countermeasures [8, 130, 131]. This property,

normally enforced by showing a confirmation message to the signer, can be easily de-

feated unless the environment assures a secure underlying platform and the application

implements highly sophisticated security measures.

Finally, and in order to avoid malicious usages of the PIN (Personal Identification

Number) linked to the SSCDev, a security functional requirement contained in those

PPs obliges the signature application to unbind it after each signing process. However,

PKCS11 standard [189], one of the widest APIs used to access cryptographic devices

(e.g. SSCDev), does not permit the unbinding procedure required by the PPs.

CEN has defined the security requirements that signature creation and signature

verification applications should fulfill [46, 47], like in the aforementioned PPs, and

which could be taken as reference in an objective security evaluation. However, those

requirements can only be fulfilled if the underlying platform is fully trustworthy.

The National Institute of Standards and Technology (NIST) has also published a

set of requirements for obtaining assurances for digital signature applications [24]. It

provides recommendations for domain parameter validity assurance, public key validity

assurance, private key proof-of-possession, and assurance of the private key’s owner

identity. Yet it does not take potential attacks on the cryptographic implementation or

the application into account. It is only concerned with the correctness of the protocols

involved and the configuration of the cryptographic implementation.

The security of a signing process depends not only on the security of the product

itself, but also on its configuration and the security of the operational environment.

51

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

The operational environment includes the operational system and related technical

elements, and the non-IT aspects, such as the organizational policies and procedures

for managing and operating the system. As a result, a complete security evaluation

should comprise all these aspects. In this sense, the CC product evaluation is limited to

the verification of the security capabilities implemented by the product, so the specific

operational context is not considered. However, and as stated in [157], if the underlying

operating system, which is commonly shifted to the environment under CC evaluations

(except obviously, when the product being evaluated is the operating system itself), is

not secure, no application running on top of it can be made secure either.

In this sense, the recently published ISO 19791 [120] focuses on the evaluation of

the operational environment, and is based on a three-layer model:

• Risk assessment, to determine the security risks applicable to a system (e.g. ISO

27005 [121]).

• Risk reduction, to counter or mitigate security risks by the selection, application

and assessment of security controls. It should be mention that a risk can be

mitigated, but never eliminated.

• Accreditation, to confirm that the residual risks remaining within the system

after the controls are applied are appropriate for the system to be used in live

operation.

ISO 19791 concentrates on stage two, whereas the accreditation stage is normally

carried out by National Authorities following well-known procedures [86, 87].

Evaluations of the operational environment are common in back-office systems,

managed either by public or private institutions, and corporate networks. Yet this

type of evaluation is hardly applicable in environments managed by end users.

Evaluation processes are of utmost importance to gain an objective level of assurance

of the security of product, backed by accredited and competent entities. However, it

should be clear that certainty is never achieved, and, in any case, the highest level

of assurance does not imply perfect security. This reality applies to every solution

proposed in further Sections, and each time a security assumption is made either on

the signature application, the operational environment or the communication channels.

5.2 Secure Software Development Methodologies

The security of IT products must be conceived from the very beginning. In this sense,

secure software development life cycle (SSDLC) methodologies integrate specific tasks in

each stage of the software life cycle in order to cover the security needs during the whole

52

5.3 Revocation Mechanisms and Limitations on Key Usages

development. There is a wide number of efforts and approaches for the implementation

of SSDLC [62]. SSDLC methodologies typically include the next activities. In the first

instance, the regulations and rules that may impose certain security requirements in

relation to the context are analyzed (e.g. PCI DSS, electronic signature legislation,

etc.). An analysis of security requirements and attack use cases is also performed,

and by which the abuse scenarios can be modeled. During the design phase, a threat

modeling is developed, along with a system security architecture by which the security

mechanisms to implement are put in place and their relationships established. A key

issue during the application of SSDLC is the integration of best practices during the

software coding. Using automatic static code analysis tools also helps to discover

vulnerabilities in the source code. And, finally, specific security tests are usually carried

out.

SSDLC methodologies significantly contribute to the achievement of trustworthy

technology, and research in this direction are a must. A representative example comes

from the manufacturer of the most widely deployed operating system. Microsoft is re-

porting 60% fewer infections in Vista operating system, released in 2008, than Windows

XP, released in 2002 [169].

However, the increasing complexity of systems and the huge effort that imply de-

ploying and integrating these methodologies into software manufactures processes make

these initiatives less effective than initially expected. The counterexample comes from

Microsoft again. We continuously see how new security patches have to be applied to

the Windows operating system. The reduction in the number of vulnerabilities due to

the application of SSDLC methodologies has not reached a sufficiently effective level

yet, and much work has still to be done in this field.

5.3 Revocation Mechanisms and Limitations on Key Us-

ages

Standard procedures that allow a legitimate owner of a digital certificate to react against

the private key compromise are mainly limited to two procedures. On the one hand,

certificate revocation mechanisms [6], if such compromise is known before the attacker

uses the private key, and, on the other hand, legal procedures at court, if the attacker

has already taken advantage of the potential benefits derived from the signed document.

Certificate revocation can also be improved when used in conjunction with grace

and cautionary periods. ETSI signature policy report [71] contains the next description

of the cautionary period:

“[...] a signature is only valid after a minimum time frame has elapsed after the

signature time before the signature can be relied on as legally valid. This minimum

53

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

time frame is counted from an upper limit of the signature time [...] and is called the

cautionary period. A signature before this time has elapsed can be considered condition-

ally valid. It may be deemed valid only once this time has elapsed and when the status

information at the end of the cautionary period indicates that none of the certificates

from the certification path is revoked. As a result this places time requirements on the

instant when the revocation status information has to be fetched”.

Thereby, a signature is only valid after a minimum time frame has elapsed after the

signature time before the signature can be relied on as legally valid. Consequently, a

signature before this cautionary period has elapsed can only be considered conditionally

valid. It may be deemed valid only once this time has elapsed and when the status

information at the end of the cautionary period indicates that none of the certificates

from the certification path is revoked.

Whether the relying party accepts a revocation request made at a time before and/or

after the signing time depends upon the particular policy to be enforced. However, this

solution lacks of applicability since the user must, at least, suspect that the key has been

compromised. Sometimes it does not happen until the clauses of the signed document

have been put in practice, being too late for a certificate revocation.

A standard mechanism for preventing or mitigating the fraudulent usage of a cer-

tificate is to define certificate extensions, supported by the specific certificate policy

[50]. These extensions can impose additional constraints for the usage of a specific

certificate, both in context and in transactional attributes (e.g. maximum amount of

transfered money, maximum number of transactions per day, etc.). Despite these fields

are restrictively informed, and due to current computers’ capacity, an attacker can still

cause significant damage by reusing the key as many times as allowed for the maximum

amount of money permitted.

In order to cope with potential forged signatures, some authors propose the capa-

bility to revoke the signature made [199], by which the purported signer repudiates the

authorship of a signature and thus the consequences that may arise from the signed

document. Thereby, digital signatures are not regarded as non-repudiation evidence

anymore but plausible evidence. Michael Roe analyzed in his thesis [201] the inherited

problems of non-repudiation services as those that provide irrefutable evidence con-

cerning the occurrence or non-occurrence of an event or action. In [201], the concept of

plausible deniability is proposed, which permits an entity to deny its participation in a

disputed event or action, as there be no irrefutable evidence that can provide certainty

of the events happened or actions taken. However, usefulness of digital evidence can be

severely limited if its recipient bears the risk of a later denial, which he cannot influence

[165].

54

5.3 Revocation Mechanisms and Limitations on Key Usages

Zhang et al. suggested a model where both signer and relying party collaborate to

revoke the signature [236]. It was not a unidirectional revocation, but an agreed one.

In the same direction, the concept of conditional signature was presented by Lee

and Kim in 2002 [149]. In this case, the signatures exchanged during an electronic

transaction between the origin and the receiver are valid provided that certain con-

ditions are fulfilled. These conditions are directly included in a new digital signature

schema proposed.

Berta et al. designed a framework based on conditional signatures for mitigating

the consequences of using an untrusted terminal when creating digital signatures [27].

This framework requires the use of a trusted terminal - they cite a home PC - from

which confirming the validity or invalidity of the signature. However, this requirement

goes against the principle of signature revocation, that is, the impossibility to have

the means for creating reliable signatures. More importantly, this proposal does not

provide any detail respecting the procedure the user must follow in order to confirm or

revoke a signature at the trusted terminal. Considering that the user has to request

the smart card to show the operations performed (translated to a set of commands sent

to the card interface), and taking advantage of the fact that the smart card cannot

be linked to a specific terminal, an attack could be mounted on their protocol. In

particular, the attacker could initiate the revocation procedure on behalf of the user

(steps 5 to 8 in Section 4 of [30]) at the untrusted terminal. The attacker could revoke

authentic signatures providing that the conditional timeout has not elapsed and the

smart card is still accessible. This is possible if the revocation request is performed

by the attacker immediately after the signature computation. In [29], they comment

the possibility of configuring the protocol with a default deny approach, by which a

signature would remain invalid after the timeout unless it is explicitly confirmed by the

user before that time. Following the same strategy, a more dangerous attack could be

mounted to automatically confirm fraudulent signatures at the untrusted terminal.

Another detailed proposal for signature revocation is given in [152], where an XML-

based design is described. The proposed framework allows the signatory to claim a

revocation of a previously made declaration of will contained in a signed document. The

revocation method consists of producing a signed revocation token, uniquely linked to

both the signatory and the electronic signature. Several causes may derive in a signature

revocation. While some of them are not related to attack reasons (e.g. revocation of

a declaration or annulment of a legal act/contract induced by erroneous dispatching of

the declaration or duress, mutual annulment of a contract, etc.), and permit the signer

to compute the revocation token by means that remain under his “absolute” control,

others derive from a compromise of the signing process (e.g. private key compromise,

cryptanalysis attacks or semantic attacks). In this case, the existence of a trustworthy

55

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

computer for the generation of the revocation tokens is deemed necessary, and suggests

us the question why not using it for performing the signature itself. Secondly, in order

to revoke a signature the signatory must realize that an attack was performed. As

already commented, maybe it is too late for preventing the attacker to derive a benefit

from it.

In general, the signature revocation concept intrinsically implies the existence of a

trustworthy platform from which revoking or confirming previously generated signa-

tures.

5.4 Smart Card-based Solutions

Smart cards are considered trusted tamper-proof devices that securely store and use

cryptographic material. Besides the fact that there are direct attacks on these devices

[41, 61, 77, 80, 84, 147, 208, 223], smart cards do not have a direct interface to the user,

and thus need to leverage in the untrusted environment most of the signing processes.

In order to reduce the number of operations to be executed in the untrusted envi-

ronment, Kilian-Kehr and Posegga provide a set of protocols where the most part of the

signing process is shifted from the untrusted components into the trustworthy element

of the platform: the smart card [135]. In one of the protocols therein proposed, the

card must store the signature application and be able to process and hash the whole

document (feasible depending on the document’s size). Besides, the card must receive

the document to be signed from the originator through a dedicated channel, which

usually has a constrained bandwidth. The main contribution of the paper is a protocol

where the signed information is derived from an interaction with a service provider

(e.g. the case of an e-commerce transaction). In order to protect the signing process,

the protocol needs a trusted computing platform that executes certain script code for

the document-to-be-signed generation. In this case, the whole security of the process

depends on this assumption. Moreover, input from the user is not protected, what

would allow an attacker to modify the actual sensitive information of the transaction.

In [28], Berta proposes an interesting solution to allow the user to generate reliable

messages by using multiple smart cards at an untrusted terminal. The message to be

signed is split into several pieces of information (signals) with no semantic meaning

(as the attacker can modify the content) except for the smart card that signs each

signal. The message meaning is thus extracted from the sequence of signed signals.

The protocol seems secure against potential attacks. However, the proposal lacks of real

applicability. If the signal is bit-based, signing a long message demands an incredible

amount of time from the user, besides requiring him to manually translate the message

into binary code (using automatic means would imply that the attacker has a chance

56

5.5 Usage of Mobile Devices

to modify the meaning of the message). On the other hand, creating a set of encoding

rules (e.g. each card represents a number/set of letters, a word, ...) makes the protocol

less flexible. The more abstract the encoding rules are, the less number of semantically

feasible messages can be sent.

5.5 Usage of Mobile Devices

Mobile devices have been widely proposed in the literature as the means to provide a

trustworthy environment for digital signature computation [204]. In particular, Per-

sonal Digital Assistants (PDA) and latest generation mobile devices have reasonable

computational capacities and advanced user interfaces. As such, they are a candidate

for enforcing the reliability of the signing process.

In [132], the authors propose a PDA to act as a personal device for controlling a

smart card attached to it using an asymmetric key pair for creating digital signatures,

and circumventing the problems involved with untrusted document viewers. The same

philosophy is used in [161], where a PDA is used again for computing digital signatures.

Another solution, named Trusted Pocket Signer, funded by the German Federal

Ministry of Economics and Labor, is presented in [92]. This solution consists of a PDA

which combines secure wireless communication, trustworthy visualization of documents

to be signed, smart cards and user authentication based on biometrics as realization of

the willful act in order to provide a trustworthy signature creation environment.

Nevertheless, every mobile-based solution makes some wrong or dangerous assump-

tions. In most cases, the underlying platform of the device is considered trustworthy, or

at least, more resilient to current attacks. Quite the opposite, in 2004, a research on the

security of mobile operating systems concluded that they were not suited to produce

legally binding signatures, as none of them supported secure data management and

there were still a large number of open security gaps in those operating systems [172].

The increasing use of this type of device for daily life communications has made

attackers target them as a profitable victim. To date, there are several potential attacks

that can subvert the security of mobile devices such as those used for digital signatures

[108]. Recently published surveys [170, 217] have analyzed the main threats for mobile

devices, and it can be seen that attacks on mobile networks and devices are growing in

number and sophistication every year.

As a result, a solution exclusively based on mobile devices does not provide an

added value, suffering from the same types of threats as traditional platforms.

57

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

5.6 Forcing a Confirmation Step

In the mid 90’s, an innovative payment system for e-commerce that used a confirmation

channel was proposed by First Virtual Inc. [110]. In order to make a transaction

initiated with a merchant effective, the buyer had to confirm it by replying an email

sent by a secure server of the payment system. In the authors’ opinion, attacks that

could compromise the user’s computer (without being traced) for monitoring incoming

emails to confirm fraudulent transactions (or reject authentic ones) were considered too

sophisticated and with a low probability of occurrence. Nowadays, it has been proved

that multiple types of attack can achieve that.

Another related payment system followed the same philosophy, but, instead of re-

quiring a confirmation by email reply, it included a second authentication round when

needed (e.g. once the user was correctly authenticated after providing the correct pass-

word, a challenge-response mechanism could be executed by the so called payment

switch) [83].

Solutions that create a confirmation channel (email, HTTP, etc.) rooted at the

same platform where the transaction is initiated lack of effectiveness against current

threats. If the platform and operational environment is under the attacker’s control,

the attacker can subvert the confirmation channel at its will.

Some home banking solutions incorporate a confirmation step where the user must

enter a code previously sent to his mobile phone in the Web site where the transaction

has been initiated (e.g. to transfer funds). Nevertheless, no strong evidence is generated

(and of course no evidence fulfilling the non-repudiation property). The confirmation

action does not bind the user in any sense, once the code can have been intercepted by

an attacker, or even an untrusted Web site could have committed the transaction on

behalf of the user. In cases where the confirmation step is performed in an environment

different than the one that originated the transaction, a split trust paradigm is being

put in practice.

5.7 Split Trust Paradigm

The split-trust paradigm or model was introduced in 1999 by Balfanz and Felten [22],

and claims that hand-held computers (mobile devices such as PDAs or smart phones)

are more suitable for carrying out sensitive operations like digital signatures or cre-

dentials management. In contrast to solutions that uniquely employ a mobile device,

reviewed in Section 5.5, under this new paradigm multiple devices work in tandem.

Applications are split into two parts: one part that runs on a hand-held, trusted but

58

5.7 Split Trust Paradigm

resource-limited device; and a second part that runs on a more powerful and capa-

ble platform, normally untrusted (e.g. a PC, laptop or public terminal). Both parts

work in conjunction to offer the user certain functionality (e.g. secure Web browsing,

operation with public terminals, generation of digital signatures, etc.).

Several authors propose the application of split trust model to protect the user’s

privacy and security when operating with public or other type of untrusted terminals

[81, 166, 180, 202, 215, 216].

Ross et al. [202] provide a detailed architecture that allows the user to complete a

transaction initiated at an untrusted terminal by using a trusted device for the security-

enhanced service interactions. However, the user is not allowed to enter data at the

trusted terminal, being restricted to the visualization of sensitive service content only.

A similar philosophy has been recently followed by Maurer and De Luca in [166], but

in this case, the user is allowed to enter sensitive data from the mobile device.

The same perspective has been applied in [215] to a secure Web Browsing context,

using a single commercially available cell phone as the trusted personal device. The user

must confirm the transaction initiated at an untrusted terminal by using the trusted

device, being able to enter PINs, password or whatever sensitive data are needed. The

data flow from the trusted terminal to the Web server through the untrusted terminal

(via bluetooth or USB connection, for instance), but encrypted with a key previously

agreed between both endpoints. Each time a transaction is initiated, the user will

notice it by receiving the message on his mobile device.

Sharp et al. describe in [216] a system that enables users to access their applica-

tions and data securely using a combination of public terminals and a more trusted,

personal device. Thereby, the sensitive and private information is censored at the public

terminal, being accessible only at the trusted, mobile device.

In [81], the user leverages a personal mobile device to establish trust on a public

terminal prior to revealing personal information to that terminal. The user employs

his mobile device to determine the identity and integrity of the software installed in

the public terminal, which must contain a Trusted Platform Module (TPM) [226] and

the Integrity Measurement Architecture (IMA) [206] to support software attestation.

Though this solution is focused on public terminals, a signatory could apply it to verify

the state of his home PC before computing a signature. Notwithstanding, the authors

recognize that several attacks are possible, including malware that compromises the

state of the terminal during runtime (after the attestation has been performed), and

a Reboot-between-Attestations attack, by which the terminal could reboot and run

malicious software after attesting to its software integrity but before the user reveals

personal data.

59

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

In [168], the authors propose a system that uses a trusted mobile device as a proxy

between a keyboard and a TPM-equipped host platform (e.g. home PC) to establish

a trusted channel for sensitive user input to applications. The aim of the system

is to avoid malware running at user level on the host platform from capturing the

user’s input (e.g. a PIN or password). Therefore, the considered attack potential is

drastically reduced, not covering malware with root privileges or that could compromise

the operating system kernel. The authors also assume that the user’s host platform is

capable of attesting to its current software state, using a TPM architecture. Otherwise,

a compromise of the active kernel would permit an attacker to capture the sensitive

input. In addition, an attack on the mobile device is not considered either. Otherwise,

the whole process is vulnerable. Furthermore, the software components installed on

the host platform whose integrity is verified by the TPM architecture are restricted to

the boot stack, the kernel, its modules and well-ordered system services. Finally, the

system is not resilient to hardware keyloggers.

The solution given in [168] does not avoid a malware from compromising the host

platform providing that it does not violate the integrity of the verifiable software com-

ponents. Other runtime attacks can be performed by the malware for compromising

the sensitive data managed by the trusted application during its operation. Thus, vul-

nerabilities of the trusted applications can still be exploited by the malware. In general,

a signing process over a document stored in the untrustworthy host platform can also

be compromised. It should be noted that this solution is focused on protecting the

user’s input to trusted applications and providing a trusted visual output to the user.

As a result, most of the threats that may arise in the context of this thesis are not

counteracted by design.

A specific solution for enhancing the reliability of digital signatures is presented in

[129]. Jøsang and AlFayyadh propose a protocol for ensuring the WYSIWYS property

by requiring two different platforms for completing the signing process. The user selects

the document to be signed in the Document Processing Platform (DPP). DPP must

transmit this document to a Portable Signature Platform (PSP) with cryptographic

capabilities. Afterwards, an image of the screen where the document is being displayed

must be captured by the user with a Digital Camera integrated in the PSP. This image

is processed by an OCR (optical character recognition) software, composing a digital

copy of the document selected by the user. If the document transmitted to the PSP

by the DPP and the document generated by the OCR in the PSP itself are equal, then

the user can perform the signature of the document by using the PSP. Finally, the

signature is sent back to the DPP and verified against the original document. A patent

application with the same approach was filed by Müller-Quade et al. [174]. In this

case, a prototype was implemented in Java Micro Edition for mobile phones.

60

5.8 Trusted Computing Technologies

Though the approach found in [129, 174] mitigates the signature environment un-

trustworthiness problem, it has usability constraints. But more importantly, a malware

that compromised the PSP could generate binding signatures on behalf of the user on

whatever information. These signatures could act as non-repudiation evidence with

malicious purpose though the protocol was not completed.

The aforementioned solution proposed by Berta et al. [27] can be classified as a

split trust solution as well, though the trusted computer is not a mobile device but

a PC platform. The signatory has to make use of a trusted computer to confirm or

revoke the signatures generated at an untrusted terminal.

5.8 Trusted Computing Technologies

Trusted Computing Technologies intend to provide computers that consistently behave

in expected ways, being those behaviors enforced by hardware and software and using

cryptography techniques.

Balacheff et al. presented a method to increase the trust in open computing plat-

forms, such that a signatory can be confident when generating digital signatures [21].

In particular, their method requires the platform to be equipped with a TPM and a

Trusted Display Controller (TDC), and the user must own a smart card. The archi-

tecture described enforces a secure display by shifting the control of the video graphics

processing to the TDC. There is also a secure communication channel between the

TDC and the smart card, assuring that what the user is visualizing on the screen cor-

responds to the data sent for the signature computation. In a nutshell, the solution

therein proposed expects to assure the WYSIWYS property of a signing process. They

claim that their solution avoids the need to trust in the underlying platform, as the

whole signing process is carried out by reliable components. However, their proposal

requires a specific hardware architecture, including a TPM and a protected video cir-

cuitry. In addition, the authors assume that the user has access to a trusted platform

for loading certain information (more specifically, the seal image) into the smart card,

and that is needed for the subsequent trustworthy signature computation.

In [220], Spalka et al. explain how to protect the creation of digital signatures

against Trojan Horse programs by combining the Intelligent Adjunct Model defined by

Balacheff in 2000 [19] with a TPM. In the Balacheff’s model, an adjunct (the smart card

in their proposal) is given control over off-card resources, becoming an active element

that can initiate transactions. Spalka et al. elaborate three scenarios in which the

signing software location differs: a scenario where the signing software is installed in

the PC (classical view); a second one where the smart card sends the software to a Java

61

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

Virtual Machine for the signing operation; and a third scenario where the smart card

directly communicates with the user, and thus keeps the signing software on its own.

The architecture given by the authors in [220] incorporates a SWORM (Software

Write Once Read Many) medium which would allow the signer to securely write the

document to be signed into it for a later signature computation. Afterwards, the

SWORM medium would transmit the document to the signature application, according

to its location (the scenarios previously mentioned). They assume that a Trojan Horse

trying to forge a signature will only react when the document is marked as signable.

Therefore, they consider that the malware will not attempt to alter the data during its

transmission from the application that generates the document (e.g. a standard editor)

and the SWORM medium. To us, this assumption is questionable, since a malware can

be specifically designed to undermine a concrete security mechanism like this, and thus

could perform a man-in-the-middle attack between the application and the SWORM

medium.

Initiatives and technologies coming from the Trusted Computing Platform Alliance

(TCPA) [20] pave the way for achieving more trustworthy platforms. However, TPM-

based approaches are still vulnerable to certain attacks, like the TOCTOU attack

(Time-of-check Time-of-use) [38], where a malware can subvert the integrity of the

platform once it has been verified during the boot process. Thereby, there is still a

window of vulnerability during which an attacker can compromise an application or

even the underlying operating system before the signature is generated. More attacks

can be carried out on a TPM, like a reset attack (needs physical access to the platform),

a BIOS attack, a Bootloader attack or the cold-boot attack, as explained in [171].

Although we consider that TCPA initiatives are paramount, they do not completely

eliminate the probability of a successful attack while at the same time extra complexity

and cost are added to end user computers.

5.9 Server-Aided Signatures

Server-aided or server-assisted signatures is a trend in which the signature computation

is delegated to an external server managed by a Trusted Third Party (TTP), and

which acts on behalf of the user [33, 64, 156, 194]. Thereby, users that own resource-

limited devices still have the possibility of generating digital signatures in mobile-based

transactions.

While some protocols permit the user to send the document or message to be signed

to the server, others like [135] (a variant of the Kilian-Kehr et al. protocol explained

in Section 5.4), obliges the document to be stored as a Web resource in the TTP. As a

result, the signatory’s capability to sign local documents is eliminated.

62

5.10 Other Proposals

The main disadvantage of server-aided signatures is that, as the signature compu-

tation is delegated to an external entity, the signatory loses the control over the signing

means, and thus, the generated signatures could not be attributed to the signatory (see

Chapter 2 for further details). Furthermore, the server becomes the main target of the

attacks. If the security of the TTP is compromised, then the cryptographic material of

every user can be accessible by the attacker.

5.10 Other Proposals

There are some proposals classified under the terms human-computer cryptography

[163] or visual cryptography [176], and that try to enforce secure authentication or

encryption mechanisms making use of end user capabilities only. As a result, these

proposals do not rely on external cryptographic devices such as smart cards. However,

they suffer from severe drawbacks, as remarked by Berta and Vajda in [31]. For instance,

if the user is not able to encrypt and decrypt messages in one step, then the remote

partner is not able to help the user to establish a secret channel either. Or if the user is

unable to calculate an authenticator that cannot be broken by the terminal, then the

remote partner cannot help the user in constructing an authenticated channel.

Maurer studied the intrinsic limitations of digital signatures and the related liability

issues [165]. In his opinion, there must be a trade-off between the usefulness of digital

signatures acting as digital evidence and the digital liability exposure derived from that

evidence. As a signature can be generated without the user’s consent or knowledge (e.g.

malware, ambiguous interfaces, etc.), he proposes to support the liability by producing

a digital declaration consciously generated by the signatory. As a consequence, the

liability of a signature would rely on the user’s awareness at the time of generating

the signature. Maurer argues that, though the user still has the possibility to deny

the digital declaration, it implies a consequence as serious as denying the authorship of

a hand-written signature, being forced to testify. Therefore, the digital evidence acts

as additional evidence that discourages the purported signatory to falsely deny having

generated the corresponding digital signature. However, and contrary to the author’s

opinion, such digital declarations can also be forged by an attacker. Consequently,

digital declarations do not provide additional security to the signing process.

A method specifically focused on solving the problem of signing digital documents

with dynamic content is given in [8]. Therefore, this proposal merely counteracts a very

specific subset of attacks. The method relies on Microsoft Component Object Model

(COM) architecture. The program that composed the document to be signed is invoked

by the signature application in order to parse the document and eliminate all dynamic

content. In addition, this program must be shared by both the signer and the verifier,

63

5. SECURITY ENHANCING TECHNOLOGIES AND METHODS

but the COM approach can resolve the issue by making the program available through

a registered COM object in Windows environment. The security analysis performed

by the authors rises several attacks on their schema. On the other hand, the authors

state that their countermeasure cannot be effective if the attacker gains access to the

signer’s or verifier’s computers, and is able to violate the integrity of certain data (e.g.

the extension/application association tables).

In [144], a method to ensure the integrity and authenticity of client-server com-

munication from end to end is presented. This solutions could be applied to remote

transactions where a user had to make a binding commitment, like home banking

transactions. The authors assume that the user is not logged in the system as an

administrator and no malware is running with administrator privileges. Furthermore,

the integrity of the operating system on which the trusted path implementation runs

must be assured. Because the authors do assume the existence of malware, it is not

ridiculous to think that it could compromise the operating system too. As they remark

in their paper, if the underlying platform has vulnerabilities, one should refrain from

using any security-relevant software on it.

Buccafurri and Lax implemented a solution based on Java Cards aimed at strength-

ening the reliability of the signing process [42]. The signer uses a Java Applet loaded

from the Java Card to check whether the document sent to the card by the signature

software has been modified by a malware. The Java Applet reads the file and sends

it to the Java Card for a second hash computation acting as a check round. However,

and as admitted by the authors, their solution is effective only against malware running

at user level, more specifically, malware that has compromised the signature software.

A malware performing a man-in-the-middle attack between the operating system I/O

interfaces and the Java Applet could easily cheat the security mechanism. On the other

hand, the solution only targets a single type of attack, being vulnerable to many others.

64

Part III

Proposal

65

Chapter 6

A Taxonomy of Attacks on

Digital Signatures

In this Chapter we propose a taxonomy that contains a holistic categorization of attacks

on digital signatures, covering attacks on both the generation and verification phases.

The Chapter also includes a method for the systematic classification of attacks accord-

ing to the taxonomy.

The Chapter is organized as follows. The terminology used along the remainder of

the Chapter is given in the next Section 6.1. The models for the signature creation

and signature verification environments are discussed in Section 6.2. The threat model

from which the taxonomy will be devised is detailed in Section 6.3. The taxonomy of

attacks on digital signatures is described in Section 6.4. Section 6.5 provides the method

to systematically classify an attack on digital signatures according to the taxonomy.

Finally, we conclude the Chapter in Section 6.6.

6.1 Terms and Definitions

Before affording the definition of a taxonomy, the terms and concepts applicable to the

particular field of knowledge must be fixed. The terminology contained in this Section

is based on widely accepted terminology on information security and dependability. In

particular, the definitions are based on [17], where Avizienis et al. presented a profound

work that defines and classifies basic concepts of dependable and secure computing.

Other definitions covering digital signatures and specific related technology were given

during the analysis of the state of the art, in Part II.

A system, from a broad viewpoint, is an entity that interacts with other entities

(i.e. other systems, including hardware, software, humans) and the physical world with

its natural phenomena. In this thesis, our system corresponds to, on the one hand,

the signature creation system (see Section 6.2.1) and, on the other hand, the signature

67

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

verification system (see Section 6.2.2). The specific definitions that apply to those

systems are given in the corresponding Sections.

The function of a system is what the system is intended to do and is described

by the functional specification in terms of functionality and performance, while the

behavior of a system is what the system does to implement its function and is described

by a sequence of states.

The service delivered by a system is its behavior as it is perceived by its users.

The part of the provider’s system boundary where service delivery takes place is the

provider’s service interface. The part of the provider’s total state that is perceivable

at the service interface is its external state, while the remaining part is its internal

state. The delivered service is a sequence of the provider’s external states.

Correct service is delivered when the service implements the system function. On

the contrary, a service failure or failure is an event that occurs when the delivered

service deviates from correct service. A service fails either because it does not comply

with the functional specification, or because this specification did not adequately de-

scribe the system function. A service failure means that at least one or more external

states of the system deviate from the correct service. The deviation, also called an er-

ror, is the part of the total state of the system that may lead to its subsequent service

failure. The adjudged or hypothesized cause of an error is called a fault, which can

be internal or external. A vulnerability is an internal fault that enables an external

fault to harm the system. An attack is considered a malicious external fault that tries

to provoke a service failure. An attack is basically the occurrence of a threat that

compromises an asset or system resource by exploiting a vulnerability in the IT system

[218].

The different ways in which the deviation is manifested are the system’s service

failure modes. The service failure modes can be characterized based on next four

viewpoints:

• the failure domain;

• the detectability of failures;

• the consistency of failures; and

• the consequences of failures on the environment.

Dependability of a system is the ability to avoid service failures that are more

frequent and more severe than what is acceptable, and, as a result, it can justifiably

be trusted. Dependability comprises the properties availability (readiness for correct

service), reliability (continuity of correct service), safety (absence of catastrophic

68

6.2 System Model

consequences on the user(s) and the environment), integrity (absence of improper

system alterations), and maintainability (ability to undergo modifications and re-

pairs). Dependability is equivalent to trustworthiness, which implies the assurance

that a system will perform as expected.

Security traditionally comprises confidentiality (absence of unauthorized disclo-

sure of information), integrity and availability properties. Authentication is defined

as the process of reliable security identification of subjects or data by incorporating

an identifier and its authenticator [123]. The authentication of entity or data is also

commonly referred as a desired security property.

A dependability or security failure occurs when the given system suffers service

failure modes more frequently or more severely than acceptable.

6.2 System Model

In this Section, the signature creation and signature verification environments that

will be used to design the taxonomy are modeled. This abstract representation of the

systems will permit us to devise the categories of attacks that may subvert the signing

or verification processes.

6.2.1 Signature creation environment

The model of the environment used by the signer to generate a digital signature is

shown in Figure 6.1. It corresponds to the model provided by CEN CWA 14170 [46],

with some refinements further explained. Therefore, we will consider digital signatures

generated by end users, who own and control the signing key and interact with the

signing capabilities offered by the environment. The physical environment where the

signing process takes place can be either under the signer’s control and possession (e.g.

personal computer, corporate laptop, mobile phone, personal digital assistant, etc.) or

operated by a service provider not necessarily related to or under the control of the

signer (e.g. any public place like a metro station, bank, etc.), but in any case accessible

by him. It should be mentioned that there is no direct interface or communication

channel between the signer and the signing key and the information to be signed. The

signer must rely on the IT elements of the environment to produce a digital signature.

In any case, it is assumed that the environment has been designed to permit the signer

to securely and consciously create digital signatures on his behalf and on the intended

information.

As mentioned by CEN, the model does not intend to specify the nature or distribu-

tion of the components. These aspects can only become more concrete in the context

of a particular set of technologies that apply to the signature creation system.

69

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

Figure 6.1: The signature creation functional model (source [46]).

In the model of CEN, the Signature Creation Environment (SCE) is the physical,

geographical and computational environment of the Signature Creation System (SCS),

including the signer and the existent policies. The SCS consists of the software and

hardware needed to generate digital signatures.

The Signature Creation Application (SCA) is the application within the SCS that

creates digital signatures, excluding the Signature Creation Device (SCDev). Accord-

ing to the European Directive on electronic signatures [76], the SCDev can be either

software (SW SCDev) or hardware (HW SCDev). A typical functional difference be-

tween software and hardware devices is that, in the former, the Signature Creation

Data (SCD) are usually exportable, while in the latter they cannot be (theoretically)

extracted from the device. On the other hand, CEN CWA 14169 [45] defines the secu-

rity requirements for Secure Signature Creation Devices (SSCDev) in accordance with

the Annex III of the European Directive, and following the technology-neutral principle

claimed by it.

However, and contrary to this, CEN CWA 14170 actually restricts the attribution

of SCDev and SSCDev to hardware devices only. We decided to follow the general

approach given by the European Directive and CEN CWA 14169, also considering

software devices as devices that implement the SCD. The reason also stems from the

possibility that a digital signature not generated with a hardware cryptographic device

70

6.2 System Model

can be considered as evidence in legal proceedings as well (see Chapter 2). Figure 6.2

shows a view of our adapted model of signature creation environment.

Figure 6.2: Adapted signature creation functional model.

In addition to the software (S)SCDev, our adapted model shown in Figure 6.2

represents three additional components not found in CEN CWA 14170 model: the

device driver, the cryptographic service provider and the software keystores. These

elements are commonly found in a SCS, independently of its nature, and will permit

us to discover relevant attack categories useful for the taxonomy.

The software keystores (SWKey) are protected data structures that store the SCD

of the user(s), but do not implement signing capabilities. SWKey are managed by

specific software, such as SCA or Web browsers. Access to the SCD stored in SSCDev,

SCDev and SWKey is protected by means of the Signer’s Authentication Data (SAD),

which are the data (e.g. PIN, password or biometric data) used to authenticate the

signer and required to allow the use of the SCD.

The signer can interact (service interface) with the SCA directly or through other

applications, identified in Figure 6.2 as the User Application layer (App). The Crypto-

graphic Service Provider (CSP) is a software layer that operates on top of the Operating

System and that allows the SCA to transparently access and use the SCD by invoking

the Application Programming Interface (API) that it publishes.

71

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

The Data To Be Signed (DTBS) - not shown in Figure 6.2 - is defined by [46] as

the complete electronic data to be signed. It covers the signer’s document (SD) and,

optionally, the signature attributes, which enrich the semantic of the document. The

SD can be a local document, a Web content, a document imported from a different

environment or any other type of information. Signature attributes, if present, are

signed together with the SD and may include, among others, the data content type

(it expresses the encoding format of the SD), the signature policy reference or the

commitment type made in the act of signing. Data To Be Signed Representation

(DTBSR) is defined by [46] as the data sent by the SCA to the (S)SCDev for signing.

DTBSR will generally correspond to the cryptographic hash of the DTBS.

6.2.2 Signature verification environment

CEN models the Signature Verification Environment (SVE) in CWA 14171 [47]. The

model intends to outline a general guideline on signature verification procedures in

order to achieve the recommendations for secure signature verification given in Annex

IV of the European Directive on electronic signatures [76]. In a nutshell, the signature

verification system is intended to permit the verifier to securely and unambiguously

verify digital signatures and associated information.

CEN defines the verifier as the entity which verifies the electronic signature, and

establishes that it may be a single entity or multiple entities. But contrary to CEN CWA

14170 (see Section 6.2.1), the verifier is not restricted to end users only. Although the

European Directive [76] explicitly refers to the verifier as the person to whom to the data

used for verifying the signature and the verification result are displayed, CEN considers

three different models: a natural person, using his workstation and accompanying

software to request verification of a received signature, a computer program, using an

automated procedure, for which the term “display” would cover a broader meaning,

and a third-party to which the verification could be sub-contracted.

In this Chapter we adhere to the vision given by the European Directive, and thus,

assume that the verifier is a human user that physically visualizes the signed data and

any other information that must be verified during the signature verification process.

However, we comply with a multi-party verification process as long as there exists a

participation of an end user. For example, the end user would be typically involved

in the initial and subsequent verification (see [47]) in order to visualize and verify the

signed data and signer’s identity, while the validation information to be captured and

archived during such stages may be leveraged to third parties. It should be noted that

when referring to Signature Verification System (SVS) along the rest of the Chapter, we

mean a system that may implement the initial verification, the subsequent verification,

or both, by means of a Signature Verification Application (SVA).

72

6.2 System Model

Figure 6.3: The signature verification functional model - initial verification systems
(source [47]).

The models of an initial verification system and a subsequent verification system

defined by CEN are represented in Figures 6.3 and 6.4, respectively. While the initial

verification stage could be partially performed by the signer, the subsequent verification

stage is always performed by the verifier.

Along the rest of the Chapter we will use Data To Be Verified (DTBV) term to

refer to the information that was signed and has to be verified against the signature.

This information corresponds to both the signed document and the optional signed

attributes, that is, the information contained in the DTBS during the signature gen-

eration. The DTBV would correspond to the signed document element represented in

Figures 6.3 and 6.4.

73

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

Figure 6.4: The signature verification functional model - subsequent verification systems
(source [47]).

6.3 Threat Model

This Section provides an asset-centric threat model that will be later used to devise the

taxonomy. The system model from which the threat model is built corresponds to the

signature creation (SCE) and verification (SVE) environments described in Section 6.2.

A system complying with this model could implement the signature creation function-

ality, the signature verification functionality, or both. Besides, specific implementations

may not include some parts of the environments. In any case, the threat model is still

applicable since the assets and security objectives remain the same independently of

the particular products or technology used for the system development.

The next Section 6.3.1 defines the assets considered in the system model, and the

security objectives and the security functional requirements to be fulfilled and im-

plemented by it. The faults and service failures applicable to the system model are

introduced in Section 6.3.2. The attacker profile is defined in Section 6.3.3. Finally,

74

6.3 Threat Model

the assumptions on the threat model are given in Section 6.3.4.

6.3.1 Assets, security objectives and security functional requirements

The identification of the assets to be protected by the system is paramount during

a threat model definition. It permits to further define the security objectives and

requirements to be met.

Risk analysis and management methodologies usually consider a large number of

assets, including logical, physical and personal entities, and that it would imply a vio-

lation of the purported dependability and security properties of the system if they were

compromised by an attacker. We only consider the assets that affect the system func-

tion in the last term, that is, either permit the signer to securely and consciously create

digital signatures on his behalf and on the intended information, or permit the verifier

to securely and unambiguously verify digital signatures on the signed information.

For instance, there would be no signing or verification process reliable if an attacker

compromised the integrity of the operating system. However, the attacker must com-

promise one of the assets identified herein to succeed. The mere compromise of the

operating system does not imply that the security of a signing or verification process

has been subverted. Therefore, we focus on the particular asset that, if compromised,

might imply a system failure (see Section 6.3.2 for detailed information about consid-

ered systems’ failures).

The assets considered in our threat model for the SCE are the next:

• The signer’s authentication data (SAD);

• The signature creation data (SCD);

• The signer’s document (SD);

• Additional signature attributes (Attr), like the data content type, commitment

type made or signature policy reference;

• The set of explicit (automated) rules and policies to follow for the generation

process (POL);

• Composition of the SD and the additional attributes (DTBS);

• The final representation (hash) of the information to be sent to the SCDev/SSCDev

before the signature computation (DTBSR);

• The signature creation system (SCS), including executable and configuration files

and any data needed by the SCS during its operation (e.g. data stored in volatile

memory).

75

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

On the other hand, the assets considered for the SVE are:

• The signer’s document (SD);

• The signer’s certificate (SC);

• The electronic signature (ES) and signed attributes (Attr);

• The set of explicit (automated) rules and policies to follow for the verification

process (POL);

• The signature verification system (SVS), including executable and configuration

files and any data needed by the SVS during its operation (e.g. data stored in

volatile memory).

For the purpose of the taxonomy defined in this Chapter, we will reduce the prop-

erties of interest that shape dependability and security concepts. The result is the

security objectives to be achieved by the SCS and SVS. From the security perspective,

we expect the SCS to achieve the next security objectives respecting the assets above:

• Confidentiality of the signer authentication data;

• Confidentiality of the signature creation data;

• Integrity of the signer’s document including the syntax (prior signature compu-

tation) and semantic (post signature computation);

• Integrity of the signature attributes, the corresponding DTBS and DTBSR before

it is sent to the SCDev/SSCDev;

• Integrity and authentication of the set of explicit (automated) rules and policies.

For the SVS, we expect the following security objectives achievement:

• Integrity and authentication of the signer’s document (both syntactic and seman-

tic as displayed to the verifier);

• Integrity and authentication of the signer’s certificate (both syntactic and seman-

tic as displayed to the verifier);

• Integrity of the electronic signature;

• Integrity and authentication of the signed attributes (both syntactic and semantic

as displayed to the verifier);

• Integrity and authentication of the set of explicit (automated) rules and policies.

76

6.3 Threat Model

Therefore, we do not expect the SCS or SVS to assure a certain level of availability

of the service. An attack that makes the signing service useless (e.g. the attacker

modifies the signature creation data - violates its integrity) will prevent the signer from

performing signatures. On the other hand, an attack that prevents the verifier from

verifying a signature will provoke an incomplete verification. However, our concern

are service failures further defined, which do not imply a degradation of the service

availability but the undermining of the signature reliability.

From the dependability perspective, we expect the SCS and SVS to achieve the

next security objectives:

• Integrity of the SCS itself (absence of improper system alterations).

• Integrity of the SVS itself (absence of improper system alterations).

Other properties inherent in dependability such as availability, reliability, safety and

maintainability are not under the scope of our threat model, and thus, of our taxonomy.

Based on the security objectives defined above, we conclude that the high-level

security functional requirements to be implemented by the system are:

• (SFR-1) The SCS must protect the signer from an incorrect or malicious use of

the signature creation data.

• (SFR-2) The SCS must protect the signer from signing a document different than

the intended one or under unintended conditions (i.e. rules and policies).

• (SFR-3) The SVS must protect the verifier from an ambiguous signature verifi-

cation, presenting the actually signed information as intended by the signer.

The trace between assets, security objectives and security functional requirements

to be fulfilled by the system is shown in Table 6.1. Each attack categorized in the taxon-

omy will necessarily violate one or more of these security objectives, and consequently

provoke one of the three service failures defined in the next Section 6.3.2.

It was previously mentioned that only assets with an impact on the delivered ser-

vice are being considered. In any case, it is important to remark that the security and

dependability of external systems may impact on the SCS/SVS. Sometimes, there is a

strong dependence between the system and the rest of entities that belong to the envi-

ronment. As a result, the next security objectives should be met by the environment,

though not reflected in the mapping of Table 6.1:

• Integrity of the rest of the entities of the environment upon which the system

(SCS and/or SVS) depends;

77

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

Asset Security objective Security functional requirement

SAD Confidentiality SFR-1, SFR-2

SCD Confidentiality SFR-1, SFR-2

SD Integrity SFR-2, SFR-3
Authentication SFR-3

Attr Integrity SFR-2, SFR-3
Authentication SFR-3

DTBS Integrity SFR-2

DTBSR Integrity SFR-2

SC Integrity SFR-3
Authentication SFR-3

ES Integrity SFR-3

POL Integrity SFR-2, SFR-3
Authentication SFR-2, SFR-3

SCS Integrity SFR-1, SFR-2

SVS Integrity SFR-3

Table 6.1: Trace between assets, security objectives and security functional requirements

• Confidentiality of security attributes that may permit an attacker to gain access

to system service (e.g. credentials to access the SCS);

• Availability and reliability of external security services upon which the system

depends (e.g. security mechanisms implemented by the underlying operating

system, and that assures the integrity of the SCS and confidentiality of internal

channels; appropriate and timely update of the certificate revocation lists by the

certification authority, etc.).

6.3.2 Faults and service failures

As previously defined, the service failure is an event that occurs when the delivered

service deviates from the correct service. It implies an error in the system behavior

that has been caused by one or more internal and/or external faults. In our model, the

system function is to permit the signer to securely and consciously create digital signa-

tures on his behalf and on the intended signer’s document (for SCS), and/or to permit

the verifier to securely and unambiguously verify digital signatures and the identity of

the signer (for SVS). We assume that the specification does adequately describe the

system function. Consequently, we consider a service failure as an occurrence of one of

the next events:

78

6.3 Threat Model

• (1) The SCS does not protect the signer from an unintended or unauthorized use

of the signature creation data.

• (2) The SCS does not protect the signer from signing a document different than

the intended one or under unintended conditions (i.e. rules and policies).

• (3) The SVS does not protect the verifier from performing an ambiguous signature

verification.

An attack on the SCS will try to provoke service failure (1) and/or (2), while an

attack on the SVS will focus on service failure (3). In the system model discussed in

Section 6.2, it was explained that the SCS and SVS depend on the underlying operating

system, other applications running at user or kernel level, the physical environment

and other aspects like the administration and security policies to be enforced in the

environment. As a result, a failure of a service different than the one provided by the

SCS or SVS may indirectly have an impact on it, and thus provoke a SCS or SVS service

failure as well. Therefore, the attacker may try to provoke a service failure in the SCS

or SVS by directly interacting with it or exploiting a vulnerability in the SCS or SVS

(internal fault), or by provoking a failure in a different service upon which the SCS or

SVS depends (external fault that propagates errors into the SCS/SVS by interaction

or interference).

According to failure modes listed in Section 6.1, and defined in [17], an attack on the

SCS/SVS could be successfully mounted if service failures (1), (2) or (3) manifested

in a failure domain mode. Failure domain mode can be distinguished as a content

failure (i.e. the content of the information delivered at the service interface deviates

from implementing the system function) or timing failure (i.e. the time of arrival or

the duration of the information delivered at the service interface deviates from imple-

menting the system function). For example, if the signature generation or signature

verification service fails, showing a different document to sign or verify (content failure),

respectively, then the attacker could trick the user during the signing or verification

process.

From the detectability failure mode viewpoint, an attack on the SCS/SVS will suc-

ceed if the attacker provokes an unsignaled failure (caused by a latent error), either

because the service failure is not detected or because the service failure is not signaled

at the service interface (it would not be noticeable by the end user) by the implemented

detection mechanism. Otherwise, the signer or verifier is expected to perform the ade-

quate corrective actions (e.g. the signer revokes the digital certificate that corresponds

to the involved private key, avoiding the attacker to gain a benefit from the service

79

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

failure). In should be mentioned that, though service failure (2) does not always im-

ply that the signature creation data has been compromised, the signer should follow a

conservative behavior.

The consistency of failures implies that the incorrect service is perceived by two

or more users either identically (consistent failure) or differently (inconsistent failure).

For the purpose of our taxonomy, this mode of failure is not relevant and thus it is not

considered for the attack categories.

Last, the failure mode consequences of failures on the system environment can be

graded with a severity level, and are normally associated with a maximum acceptable

probability of occurrence. As discussed in this thesis, we consider that the current

definition and legal consequences of digital signatures as non-repudiation evidence imply

that the probability of an attacker to successfully obtain a fraudulent signature, or a

fraudulent signature be verified as valid, must be reduced to the minimum (zero if it

was technically possible). As a result, the failure severity for the three service failures

described above should be set by the system manufacturer to the gravest one. In the

context of our taxonomy, service failures (1), (2) and (3) identified above are always

dependability or security failures as their occurrence is, by definition, more severe than

what the service should accept (a successful attack has occurred).

6.3.3 Attacker profile

We consider two properties to profile the attackers: the attack potential and the capa-

bility to access or approach the target of the attack.

The attack potential is defined as the perceived likelihood of success should an attack

be launched, expressed in terms of the attacker’s ability (i.e. expertise and resources)

and motivation [218]. We consider an attacker with enough expertise, resources and

motivation to execute any potential attack, provided that it is technically feasible.

Respecting access capabilities, we consider attackers that can carry out both internal

and external attacks.

In an internal attack, the attacker operates inside the security perimeter of the

environment, and can be either (i) a malware that has infected an IT element of the

system, (ii) a physical person that directly interacts with the environment, handles the

hardware (e.g. the (S)SCDev) or even communicates with the end user, or (iii) the end

user itself (i.e. a malicious signer). Regarding attacks that handle the hardware (ii),

we consider attackers that can perform invasive tampering attacks on the hardware

(e.g. micro probing techniques). This type of attacks needs to handle the hardware

and physically harm it. On the other hand, the advantage of non-invasive attacks is

that the equipment used in the attack can usually be disguised as a normal device (e.g.

smartcard reader), and thus the owner of the compromised hardware might not notice

80

6.3 Threat Model

that the secret keys have been stolen. Therefore it is unlikely that the validity of the

compromised keys will be revoked before they are abused [140].

On the contrary, in an external attack, the attacker operates outside the security

perimeter of the signature environment, possibly through the network.

As can be seen in Figure 6.2, the signer is included by CEN in the SCE model, as

suggested by safety engineering best practices [205]. However, CEN does not include

the entity that represents the verifier in the SVE model. We also consider that it is not

important for the taxonomy, as the verifier does not possess any secret, and thus the

attacker cannot obtain any benefit from him.

6.3.4 Assumptions on the threat model

An important issue when defining a threat model is to establish the assumptions made

on the model. In particular, the next two assumptions are made.

• The environment is untrusted. The SCE and SVE are operated by end users,

and sometimes owned by them. As such, no assumption on security policies,

trustworthiness of the underlying platform and so forth should be made. Any

mistaken decision could be made by the user when maintaining and operating the

environment, who normally has no technical knowledge. Due to the unavoidable

presence or occurrence of faults, systems are never completely trustworthy. Design

flaws and code bugs in underlying software or hardware are an endless source

of vulnerabilities that an attacker can exploit to break the security of digital

signature processes. According to a survey made by OCDE in 2008, 43% of

Internet users from United States have suffered some sort of malware infection

in their home PC [160]. Another recent study carried out in 2009 revealed that

approximately the 33% of computers protected with an updated anti-virus are

infected, while the percentage of those not protected increased to 46% [198]. On

the other hand, APWG scanned 22 millions of computers, from which 48,35%

were infected [185]. In the 2009 annual report, Panda indicated that, in some

countries, the percentage of infected computers reached more than 60% [10].

• For the purpose of the present taxonomy, third parties (e.g. certification au-

thority, validation authority, time-stamping authority, etc.) are considered trust-

worthy. Consequently, the taxonomy will not cover categories that represent the

execution of attacks on these entities.

81

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

6.4 A Taxonomy of Attacks on Digital Signatures

This Section presents the taxonomy, which is based on the next dimensions. Each

category is assigned an identifier that consists of the number of dimension it belongs to

(D) and a category or subcategory number (CAT) according to the hierarchical order

established:

• Attacker’s goal, which covers the goal of the attack.

• Method of attack, which corresponds to the method of attack executed by the

attacker to achieve the goal classified in the previous dimension.

• Target of the attack, which identifies the target(s) of the attack. The multiple

instances of this dimension permit to know every element, both software and

hardware, that is affected during the attack.

6.4.1 Dimension one: Attacker’s goal

The goal of an attack will consist of achieving one of the service failures (1), (2) or

(3) described in Section 6.3.2. In particular, there are six categories in this dimension,

with no further refinement:

D1-CAT1: Deceive the signer to sign a document different than the intended

one or under unintended conditions

The attacker does not directly use the signature creation data (SCD) but seeks to

deceive the signer to unconsciously sign a document that is of benefit to the attacker,

against the signer’s interests, or both. The attacker may also modify the rules or poli-

cies that establish the signing requirements, possibly weakening them for his further

benefit. This category corresponds to service failure (2).

D1-CAT2: Unauthorized use of the signature creation data (SCD)

The attacker seeks to use the SCD on behalf of the user, but without his consent

and knowledge. For that purpose, the attacker will need to either obtain the signature

creation data or have access to the signing function at will. This category corresponds

to service failure (1).

D1-CAT3: Replace signed information

The attacker seeks to directly replace part of or the whole signed information for his

own benefit, the signer’s detriment or both, and once the signature has been computed.

82

6.4 A Taxonomy of Attacks on Digital Signatures

This category corresponds to service failure (2), in the sense that the final signed docu-

ment does not correspond to the original one.

D1-CAT4: Make the signed document be attributed to a user different than

the actual signer

The attacker seeks that a document signed by certain signer is verified as signed by

a different entity. Thereby, the attacker could provoke a wrong document’s authorship

attribution. For instance, the attacker may seek that a document signed by another

one is verified as signed by himself (e.g. the document’s content is beneficial). The

attacker may also seek that a document not signed by a certain user is verified as signed

by the user (e.g. the document’s content is detrimental to the user). This category

corresponds to service failure (3).

D1-CAT5: Make the Data To Be Verified (DTBV) be shown with chosen

content

The attacker seeks that the signed document and/or signed attributes are shown

to the verifier either with a content which appearance may vary (polymorphic) or with

a content different to what was actually signed or was intended to be signed. For

instance, if the attacker is the signer, he may seek to make some content that has not

signed in the beginning be verified as such (e.g. for his own benefit). If the attacker is

an external malicious entity, he may seek to attribute to the signer some content not

signed or intended to be signed by the signer (e.g. to damage the signer’s interests).

This category corresponds to service failure (3).

There is an exception when the attacker seeks to show a different content with re-

gard to the identity of the signer (e.g. target the signed attribute signing-certificate,

specified in CAdES [74] and XAdES formats [75]). In this case, goal D1-CAT4: Make

the signed document be attributed to a user different than the actual signer prevails,

and thus the attack should be classified accordingly.

D1-CAT6: Make the signature validity verification conclude with an oppo-

site result

The attacker seeks to make a signature validity verification raise a result different

than the correct one. The validity of the signature depends not only on the signature

itself but also on the certificate validity. This goal covers both when a valid signature

is verified as invalid, and when an invalid signature is verified as valid. For example,

if the attacker is the signer, he may seek that a signature signed by himself is verified

as invalid (e.g. to repudiate the commitment made in the signed document), while

if the attacker is an external malicious entity, he may seek to make a valid signature

83

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

generated by a certain user be verified as invalid (e.g. to damage the signer’s interests).

In the opposite direction, the attacker may seek to make a signature generated over

a fraudulently modified document be verified as valid. This category corresponds to

service failure (3).

6.4.2 Dimension two: Method of attack

The methods that can be used by the attacker to achieve the identified goal are spec-

ified in this dimension, and illustrated in Figures 6.5 and 6.6. Seven categories have

been devised at the first level, which are further refined into subsequent subcategories:

D2-CAT1: Environment manipulation

This category includes the methods aimed at manipulating the environment of the

SCS/SVS in order to have an effect on the signature creation process or the signed

information once the signature has been computed.

D2-CAT2: Modification prior to signature computation

This category contains the attack methods that take part before the signature com-

putation, and which goal is the modification of the information to be signed, either

directly (modification of the data to be signed) or indirectly (fraudulent data are in-

cluded by reference from the data to be signed).

D2-CAT2.1: Document modification. This subcategory of methods relates to mod-

ifications performed in the document to be signed.

D2-CAT2.1.1: Dynamic content inclusion. This subcategory of methods implies the

inclusion of dynamic content into the document to be signed. These methods aim at

maintaining the document’s integrity while varying its semantic.

D2-CAT2.1.1.1: Hidden code. The attacker inserts special tags or fields in the docu-

ment to be signed. These hidden code will be translated into certain value depending

on specific conditions that can be controlled by the attacker.

D2-CAT2.1.1.2: Active code. The attacker inserts special code, like scripts or

macros, in the document to be signed. This code is executed during the signed docu-

ment opening or visualization, and thus can perform several operations like changing

the content being shown.

D2-CAT2.1.1.3: Linked content. The attacker inserts links in the document to be

signed that point to external content not controlled by the signer. Once the signature

is performed, the attacker can manipulate that external content at will.

D2-CAT2.1.2: Content modification. The attacker modifies the content of the docu-

ment to be signed, but without including any sort of dynamic content (e. g. modifica-

tion of the text of the document to be signed).

84

6.4 A Taxonomy of Attacks on Digital Signatures

Figure 6.5: Dimension “method of attack” (first 5 categories).

85

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

Figure 6.6: Dimension “method of attack” (last 2 categories).

86

6.4 A Taxonomy of Attacks on Digital Signatures

D2-CAT2.2: Attribute modification. This subcategory of methods relates to modi-

fications performed in the attributes to be signed.

D2-CAT2.2.1: Dynamic content inclusion. This subcategory of methods implies the

inclusion of dynamic content into the attributes to be signed, aiming at maintaining

the attributes’ integrity while varying their semantic.

D2-CAT2.2.1.1: Hidden code. The attacker inserts special tags or fields in the at-

tributes to be signed. These hidden code will be translated into certain value depending

on specific conditions that can be controlled by the attacker.

D2-CAT2.2.1.2: Active code. The attacker inserts special code, like scripts or

macros, in the attributes to be signed. This code is executed during the attributes

enforcement or visualization, and thus can perform several operations like changing the

content being shown.

D2-CAT2.2.1.3: Linked content. The attacker inserts links in the attributes to be

signed that point to external content not controlled by the signer. Once the signature

is performed, the attacker can manipulate that external content at will.

D2-CAT2.2.2: Content modification. The attacker modifies the content of the at-

tributes to be signed, but without including any sort of dynamic content.

D2-CAT2.3: DTBS modification. The attacker modifies the information that rep-

resents the data to be signed.

D2-CAT2.4: DTBSR modification. The attacker modifies the hash of the data to

be signed. This would be the last data transformation step before the signature is

computed.

D2-CAT3: Modification post signature computation

This category contains the methods that take part once the signature has been

computed, and which goal is the modification of the signed information, either signed

directly (modification of the signed data) or indirectly (modification of data referenced

from the signed data).

D2-CAT3.1: External content. The attacker modifies information referenced from

the signed information (e.g. XSD, DTD). The difference between this method and

D2-CAT2.1.1.3: Linked content or D2-CAT2.2.1.3: Linked content lies in that, in the

former, the link to the external content is not included by the attacker, while in the

latter, the link is explicitly inserted by the attacker.

D2-CAT3.2: Cryptanalysis. The attacker applies a cryptanalytic method to gener-

ate a document different than the signed one without breaking the signature validity.

D2-CAT3.2.1: Hash function. The attacker applies methods specifically focused on

breaking the security of the hash function used in the signature computation. Assuming

a hash function that generates a n-bit output, there are three possible attacks.

87

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

D2-CAT3.2.1.1: Collision attack. The attacker is able to find a pair of messages

M 6= M ′ where hash(M) = hash(M ′) with a complexity lower than O(2n/2) (e. g.

The birthday attack).

D2-CAT3.2.1.2: Preimage attack. The attacker, given a hash value H, is able to

find a message M ′ where H = hash(M ′) with a complexity lower that O(2n).

D2-CAT3.2.1.3: Second preimage attack. The attacker, given one message M , is

able to find a second message, M ′, M ′ 6= M to satisfy hash(M) = hash(M ′) with a

complexity lower than O(2n)

D2-CAT4: Unauthorized invocation of the signing function

This category collects the methods that do not permit the attacker to know the

SCD but to make use of it without the user’s consent and knowledge.

D2-CAT4.1: Compromise of the signer authentication data (SAD). This subcate-

gory covers the methods that permit the attacker to retrieve the SAD.

D2-CAT4.1.1: Social engineering. The attacker manipulates or tricks the signer to

reveal the SAD.

D2-CAT4.1.2: SAD interception. The attacker intercepts the SAD during the SCS

operation.

D2-CAT4.1.2.1: Observation. The attacker observes the SAD while the signer enters

it in the SCS (i.e. shoulder surfing).

D2-CAT4.1.2.2: Interception in interprocess/entities communication. The attacker

intercepts the SAD during its transmission between logical or physical processes or

entities belonging to the SCS (e.g. sniffing techniques, software keyloggers, hooks,...).

D2-CAT4.1.2.3: Endpoint compromise. By having compromised a process or entity

belonging to the SCS, and that intervene during the communication of SAD inside the

SCS, the attacker is able to intercept the SAD when used (i.e. hardware keyloggers).

D2-CAT4.1.3: Guessing. The attacker uses a probabilistic method, brute force or

keyboard acoustic emanation techniques to guess the SAD.

D2-CAT4.2: Authentication Bypass. The attacker bypasses the authentication

method. As a result, the attacker is able to invoke the signing function without even

knowing the SAD.

D2-CAT5: Compromise of the signature creation data (SCD)

This category includes the methods that permit the attacker to retrieve the SCD.

Attacks classified under this category are the most dangerous ones, since the attacker

would be able to make use of the SCD at will, even in a different environment.

D2-CAT5.1: SCD interception. The attacker intercepts the SCD during the creation

or issuance processes.

88

6.4 A Taxonomy of Attacks on Digital Signatures

D2-CAT5.1.1: Interception in interprocess/entities communication. The attacker

intercepts the SCD during its transmission between logical or physical processes or

entities.

D2-CAT5.1.2: Endpoint compromise. By having compromised a process or entity

involved in the SCD creation, issuance, management or operation within the SCE

boundaries, the attacker is able to retrieve the SCD.

D2-CAT5.2: Eavesdropping (side-channel). Side-channel attacks exploit the infor-

mation leakage from physical characteristics of the hardware during the execution of

the cryptographic algorithm. Thereby, the cryptographic key can be guessed, and thus

compromised. It does not matter the complexity or security of the mathematical al-

gorithm, because the fundamentals of side-channel attacks rely on the dependencies

between the data processed (e.g. the private key) and/or the operation performed by

the cryptographic device (e.g. smart card) and the physical behavior of the underlying

hardware.

D2-CAT5.2.1: Timing Analysis. A Timing Analysis attack exploits timing mea-

surements from vulnerable systems to find the entire secret keys.

D2-CAT5.2.2: Electromagnetic Analysis. An Electromagnetic Analysis attack ex-

ploits correlations between secret data and variations in power radiations emitted by

tamper-resistant devices, like smart cards.

D2-CAT5.2.3: Power Analysis. A Power Analysis attack analyses the relationship

between the power consumption of a cryptographic device and the handled data during

cryptographic operations.

D2-CAT5.2.4: Microarchitectural Analysis. Microarchitectural Analysis (MA) stud-

ies the effects of common processor components and their functionalities on the security

of software cryptosystems. MA attacks exploit the microarchitectural components of

a processor to obtain the cryptographic keys. These attacks are purely based on soft-

ware, and can compromise the security system despite of the implemented security

techniques, such as virtualization, sandboxing or memory protection.

D2-CAT5.2.5: Optical observation. Optical emanations can leak sensitive informa-

tion. If the information being processed corresponds to the SCD, the attacker may

compromise it by simply observing the optical signal being produced.

D2-CAT5.3: Unauthorized access to the SCDev. The attacker compromises the

SCD by accessing the (S)SCDev (or software keystore) where it is stored.

D2-CAT5.3.1: Compromise of the signer authentication data (SAD). The attacker

is able to retrieve the SCD once the SAD is known. This method requires the SCD

to be exportable. This subcategory is further refined using the same subcategories as

D2-CAT4.1 Compromise of the signer authentication data (SAD).

89

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

D2-CAT5.3.2: Authentication Bypass. The attacker is able to access the SCD even

without knowing the SAD. This method requires the SCD to be readable by an entity

different than the SCDev or the software keystore.

D2-CAT5.4: Cryptanalysis. The attacker applies a cryptanalytic method to discover

the signature creation data.

D2-CAT5.4.1: Asymmetric algorithm. This subcategory collects attacks focused

on obtaining the private key used in an asymmetric algorithm. There are several

asymmetric or public key algorithms (i.e. RSA, DSA, Elliptic Curve, etc.). Depending

on the algorithm, the set of possible attack methods varies.

D2-CAT5.5: Invasive tampering attacks. In these attacks, the hardware (secure)

signature creation device is physically tampered using special equipment. This subcate-

gory would collect attacks that retrieve the signature creation data using decapsulation

and micro probing techniques, advanced beam technologies, etc.

D2-CAT6: Influence on certificate verification result

This category includes methods of attack that have an impact during the verification

of the certificate associated to the signature being verified. Some methods can be used

to make a verifier conclude that either an invalid certificate is valid or that a valid

certificate is invalid.

D2-CAT6.1: Alteration of subscriber’s revocation request. The attacker alters the

request made by the subscriber (legitimate owner of the certificate and associated

private key) to revoke the certificate. This method of attack is oriented to avoid the

revocation of such certificate.

D2-CAT6.1.1: DoS of revocation request. The attacker performs a denial of service

(DoS) attack by preventing the request from reaching the certification authority in

charge of processing the revocation.

D2-CAT6.1.2: Modification of revocation request. The attacker modifies the infor-

mation of the request that identifies the certificate which revocation is being requested.

D2-CAT6.2: Alteration of certificate status verification. The attacker alters the

certificate status verification process, making the verifier to conclude that an invalid

certificate (i.e. revoked or suspended) is valid, or that a valid certificate is invalid.

D2-CAT6.2.1: Grace or cautionary period bypassing. This subcategory collects

methods that allow the attacker to bypass or make the grace/cautionary period, as

defined in [47], ineffective.

D2-CAT6.2.1.1: Delay in time-stamped signature sending. The attacker delays the

time-stamped signature sending until the CRL is updated. This method of attack

assumes that the legitimate owner of the certificate (user) cannot detect the private

90

6.4 A Taxonomy of Attacks on Digital Signatures

key compromise before the attacker makes use of the signed document and the corre-

sponding signature. To implement this method, the attacker must have compromised

the private key, generated a signature on behalf of the user and time-stamped it on

his own. As a result, when the verifier receives the signature, he will possess a CRL

issued after the signing time (specified by the time-stamp) and thus will not wait for

any further update, considering the signature as valid.

D2-CAT6.2.1.2: Delay in time-marked signature sending. This method of attack is

similar to D2-CAT6.2.1.1: Delay in time-stamped signature sending, with the difference

that a time-mark is used instead of a time-stamp.

D2-CAT6.2.1.3: Exploit delay in CA’s revocation request processing. This method

of attack exploits the inevitable time that a certification authority needs to update the

CRL since the revocation request is received and processed. Therefore, and assuming

that the attacker can use the private key of the victim, the attacker is able to enforce a

signed document even though the owner had requested the revocation of the associated

certificate.

D2-CAT6.2.2: Modification of certificate status verification request. The attacker

alters the certificate status request made by the verifier in order to prevent him from

discovering the actual revocation status, or query the status of a revoked certificate

different than the purported one.

D2-CAT6.2.2.1: Modification of OCSP request. The attacker modifies the field se-

rialNumber of the OCSP request structure [173]. This method makes the verifier to

request the status of a certificate different than the targeted one. In case the OCSP

request is to be signed by the requester, then the attacker should perform the modifica-

tion before the signing or compromise the OCSP signing key for a further modification

and signature calculation. Also, as the standard establishes that the response must

include the certificate serial number (to ascertain that the response is given for the de-

sired certificate), and for this attack to succeed, the attacker should launch a secondary

attack of type D2-CAT6.2.3: Modification of certificate status verification response,

modifying the certificate serial number of the response.

D2-CAT6.2.2.2: Modification of LDAP-based request. This method of attack is

similar to D2-CAT6.2.2.1: Modification of OCSP request, but being applied over a

Lightweight Directory Access Protocol (LDAP) request.

D2-CAT6.2.3: Modification of certificate status verification response. This subcat-

egory represents methods that intend to modify the certificate status response given

by the authority (e.g. certification authority, OCSP responder, etc.). The modification

should be performed in a manner that the verifier accepts the message as valid and

authentic.

91

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

D2-CAT6.2.4: Alteration of time reference verification. The attacker modifies the

token used by the verifier as the time reference. The methods represented herein imply

that the modification is made in a manner that it cannot be detected by the verifier.

D2-CAT6.2.4.1: Modification of time-stamp. The attacker modifies the time refer-

ence included in the signature time-stamp in order to prevent the verifier from detecting

the actual revocation status of the certificate at the time when the signature was gen-

erated.

D2-CAT6.2.4.2: Modification of time mark. The attacker modifies the time refer-

ence included in the signature time-mark in order to prevent the verifier from detecting

the actual revocation status of the certificate at the time when the signature was gen-

erated. For this attack to be executed, the attacker needs to intercept the time-mark

information sent by the time-mark authority to the verifier.

D2-CAT6.2.5: Validation information reply. The attacker re-uses validation infor-

mation in order to prevent the verifier from detecting the actual revocation status of

the certificate.

D2-CAT6.2.5.1: OCSP response reply. The attacker replies with an outdated OCSP

response that contains the certStatus field [173] set to a value of interest to the attacker

(e.g. ’good’, for a certificate that is currently revoked, or ’unknown’/’revoked’ for a

certificate that is currently valid). Due to the time verification requirements established

in Section 4.2.2.1 of standard [57], the attacker should modify the current time of the

verifier’s machine for this attack to succeed.

D2-CAT6.2.6: Alteration of certificate status verification result. The attacker in-

tercepts the routine that performs the status verification process and alters the result

that indicates the status of the certificate.

D2-CAT6.3: Untrusted trust anchor/trust point addition. The attacker injects a

new trust anchor or trust point to make a certificate owned by the attacker be considered

as trusted by the verifier during the certification chain verification. The attacker poses

as the victim by using a certificate containing as subject Distinguished Name (DN) the

victim’s DN.

D2-CAT6.4: Alteration of certificate integrity verification result. The attacker in-

tercepts the routine that performs the certificate integrity verification process and alters

the result.

D2-CAT6.5: Alteration of certificate validity period verification result. This subcat-

egory includes methods where the attacker alters the verification of the validity period

of the certificate. For instance, the attacker may intercept the routine that performs

the validity period verification process and alter the result to make the certificate be re-

garded as valid. The attacker may also modify the current time of the verifier’s machine.

92

6.4 A Taxonomy of Attacks on Digital Signatures

D2-CAT7: Influence on signature verification result

This category includes methods of attack that affect the verification of the signature

being verified. Some methods can be used to make a verifier conclude that either an

invalid signature is valid or that a valid signature is invalid. Methods specifically

focused on influencing the verification of the signing certificate are included in D2-

CAT6: Influence on certificate verification result category.

D2-CAT7.1: Presentation manipulation. This subcategory collects methods that

manipulate the way the Data To Be Verified (DTBV) are visualized by the verifier. This

set of methods violates the What-Is-Presented-Is-What-Is-Signed (WIPIWIS) principle.

D2-CAT7.1.1: DTBV masquerading. The attacker alters the visualization of the

DTBV, being able to present a DTBV different than what has been actually signed.

This subcategory represents methods that focus on the way the DTBV is shown to the

verifier, but independently of the viewer being used (e.g. superimposing text on the

signed document during its visualization).

D2-CAT7.1.1.1: Document masquerading. The attacker alters the visualization of

the signed document.

D2-CAT7.1.1.2: Attribute masquerading. The attacker alters the visualization of

one or more signed attributes.

D2-CAT7.1.2: Viewer manipulation. The attacker manipulates the viewer used to

present the DTBV. In this case, the methods lie in achieving a different visualized

DTBV by targeting the viewer used.

D2-CAT7.1.2.1: Viewer substitution. The attacker substitutes the viewer with

another one that presents the DTBV in a different manner.

D2-CAT7.1.2.2: Alteration of viewer’s behavior. The attacker alters the behavior

of the viewer to make it present the DTBV in a different manner.

D2-CAT7.1.3: Verification result masquerading. The attacker manipulates the sig-

nature verification result shown to the verifier. A valid signature may be presented as

invalid, or an invalid signature as valid.

D2-CAT7.2: Policy substitution. The attacker replaces a policy used for the signa-

ture verification.

D2-CAT7.2.1: Electronic signature policy substitution. The attacker replaces the

electronic signature policy referenced in the signature and that contains the clauses

and requirements that establish the conditions under which the signature should be

considered as valid.

D2-CAT7.2.2: Certificate policy substitution. The attacker replaces the certificate

policy referenced in the certificate and that contains a named set of rules that indicates

the applicability of a certificate to a particular community and/or class of application

with common security requirements.

93

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

D2-CAT7.3: Alteration of verification process. This subcategory includes methods

that affect the processes that implement the signature verification process, in a manner

that the achieved result differs from what is expected.

D2-CAT7.3.1: Injection of signature-signed data pair. The attacker replaces the

information during the verification process by injecting a pair of signed document-

signature. It is assumed that the attacker possesses a document signed by the signer

and the corresponding signature, but different to the signed document and signature

that is to be verified.

D2-CAT7.3.2: Alteration of cryptographic verification result. The attacker inter-

cepts the routine that performs the cryptographic verification process and alters the

result.

D2-CAT7.3.3: Alteration of final verification result. The attacker is able to alter

the final result of the signature verification process, influencing on the conclusion about

the validity or invalidity of the signature.

Not every method of attack permits the attacker to achieve every attacker’s goal

established for the first dimension. Table 6.2 relates the categories of the first dimension

with the categories in the first level of the second dimension.

6.4.3 Dimension three: Target of the attack

This dimension classifies the target(s) of the attack. An attack can target more than

one victim at the same time, resulting in multiple entries in this dimension. It does not

mean that the mutual exclusion principle is violated (see Section 10.1). A non-mutually

exclusive taxonomy would produce two different entries for the same target. In this

case, several targets may need to be classified for the same attack. A scheme of the

categories and subcategories of this dimension is depicted in figure 6.7.

Next, the categories and subcategories of this dimension are listed:

D3-CAT1: Cryptography

D3-CAT2: Software

D3-CAT2.1: Application.

D3-CAT2.1.1: External application.

D3-CAT2.1.1.1: Kernel level application.

D3-CAT2.1.1.2: User level application.

D3-CAT2.1.2: Related application.

D3-CAT2.1.2.1: Document processor.

D3-CAT2.1.2.2: SCA.

D3-CAT2.1.2.3: CSP.

94

6.4 A Taxonomy of Attacks on Digital Signatures

Figure 6.7: Dimension “target of the attack”.

95

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

Goal Method

D1-CAT1: Deceive the signer to sign a
document different than the intended one
or under unintended conditions

D2-CAT1: Environment manipulation
D2-CAT2: Modification prior to signa-
ture computation

D1-CAT2: Unauthorized use of the sig-
nature creation data (SCD)

D2-CAT4: Unauthorized invo-
cation of the signing function
D2-CAT5: Compromise of the sig-
nature creation data (SCD)

D1-CAT3: Replace signed information D2-CAT3: Modification post signature
computation

D1-CAT4: Make the signed document be
attributed to a user different than the ac-
tual signer

D2-CAT6: Influence on cer-
tificate verification result
D2-CAT7: Influence on signature
verification result

D1-CAT5: Make the Data To Be Verified
(DTBV) be shown with chosen content

D2-CAT1: Environment manipulation
D2-CAT7: Influence on signature verifi-
cation result

D1-CAT6: Make the signature validity
verification conclude with an opposite re-
sult

D2-CAT6: Influence on cer-
tificate verification result
D2-CAT7: Influence on signature
verification result

Table 6.2: Relationship between the Dimension Attacker’s Goal and Dimension Method
of Attack

D3-CAT2.1.2.4: SCDev1.

D3-CAT2.1.2.5: SVA.

D3-CAT2.1.2.6: CA.

D3-CAT2.2: Driver.

D3-CAT2.2.1: Keyboard driver.

D3-CAT2.2.2: Video card driver.

D3-CAT2.2.3: SSCDev driver.

D3-CAT2.2.4: Fingerprint reader driver.

D3-CAT2.2.5: Network driver.

D3-CAT2.3: Operating system.

D3-CAT2.4: Network.

D3-CAT2.4.1: Protocols.

D3-CAT3: Hardware
1This subcategory includes the software signature creation device and the software keystore as

defined in Section 6.2.1

96

6.5 Method of Classification

D3-CAT3.1: SSCDev.

D3-CAT3.2: Computer.

D3-CAT3.2.1: TPM (Trusted Platform Module).

D3-CAT3.2.2: Hard-disk.

D3-CAT3.2.3: Memory.

D3-CAT3.2.4: Peripheral devices.

D3-CAT3.2.4.1: Monitor.

D3-CAT3.2.4.2: Keyboard.

D3-CAT3.2.4.3: Smart card reader.

D3-CAT3.2.4.4: Fingerprint reader.

D3-CAT3.3: Network equipment.

D3-CAT3.3.1: Communication buses.

D3-CAT4: Human user

D3-CAT4.1: Signer.

D3-CAT5: Information

D3-CAT5.1: Document.

D3-CAT5.2: Protocol message.

D3-CAT5.3: Cryptographic material.

D3-CAT5.3.1: Trust store.

D3-CAT5.3.2: Time-stamp.

6.5 Method of Classification

The method of classification associated to a taxonomy must clearly guide a user when

a new element has to be classified. The next steps should be followed when classifying

an attack under our taxonomy:

1. Attack analysis. The attack must be analyzed in order to understand its be-

havior and features. Depending on the available information, the result of the

analysis will be more or less detailed and accurate. This information should, at

least, permit the completion of the remaining steps of the classification method.

2. Identification and classification of the attacker’s goal. The goal of the

attack must be identified and classified according to the dimension Attacker’s

Goal.

3. Analysis and classification of the method of attack. The method used

by the attacker to achieve the identified goal must be classified according to

the dimension Method of Attack and Table 6.2. The method of attack must be

classified in a subcategory of the deepest level of the selected branch.

97

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

4. Identification and classification of targets of the attack. The elements

affected by the attack must be identified and classified in accordance with the

subcategories found in dimension Target of the Attack. Like in the previous step,

a subcategory of the deepest level of the selected branch must be selected. Only

targets directly involved in the signature creation or verification operation should

be classified. For instance, any internal attack carried out by means of malware

must firstly compromise the system (e.g. due to a vulnerability in the operating

system). However, the operating system should not be classified as a target

unless it had a vulnerability that allowed the attacker to directly compromise the

generation/verification process.

5. Refine the taxonomy. In steps 2, 3 and 4, if a more specific or refined sub-

category is needed, it must be added to the taxonomy, and the attack classified

accordingly.

As a result, an attack will be classified using one category of dimension Attacker’s

Goal, one subcategory of dimension Method of Attack, and one or more subcategories

of dimension Target of the Attack.

As mentioned above, the accuracy and detail extracted from the attack analysis

depends on the available information. Obscure attacks or attacks from which little

information can be obtained will necessarily be more complicated to classify. On the

other hand, attacks that can be studied in detail, for instance applying re-engineering

techniques to the malware code or during a forensic study, will provide much more

information that can be used to accurately define the attack behavior and features,

and thus to classify the attack.

Next, and for illustration purposes, a Trojan horse attack on software for electronic

signatures [219] is classified using our method of classification.

Firstly, we have studied the information provided in [219]. The attack is carried out

on two of the most deployed signature software in Germany. The attacker obtains a

handle to the PIN edit control in a Windows operating system environment. Once the

user has entered the PIN, the attacker is able to retrieve it and start as many signing

processes as desired. The authors do not provide the attack vector to infect the system

with the Trojan horse, though we can assume that the environment does not provide

effective protection for detecting this specific malware. Otherwise, the attack would

have been thwarted in the very beginning. Therefore, it can be assumed that there is

a vulnerability in the system that the attacker can exploit for the infection.

In the second step, and using the information above, the goal of the attack has to

be classified. In this case, the main objective of the attacker is to use the signature

98

6.5 Method of Classification

creation data without the user’s consent. Therefore, we classify the goal as D1-CAT2:

Unauthorized use of the signature creation data (SCD).

The next step establishes that the method used by the attacker to achieve the

identified goal must be classified. Table 6.2 restricts the candidates to two. Because

the attack does not retrieve the SCD, and due to the description given, it is obvious

that the method intends to use the SCD by invoking the signing function. Therefore,

we classify the method of attack as D2-CAT4: Unauthorized invocation of the signing

function. However, the method of classification stipulates that a subcategory of the

deepest level of the selected branch must be selected. Taking a look at D2-CAT4

subcategories, it is clear that the attacker is compromising the signer’s authentication

data (D2-CAT4.1: Compromise of the signer authentication data (SAD)). In particular,

the attacker obtains the PIN. Then, in a deeper classification, the next subcategory

corresponds to D2-CAT4.1.2: SAD interception, and more specifically, D2-CAT4.1.2.3:

Endpoint compromise, as the PIN is retrieved due to a vulnerability in the PIN edit

control of the signature creation application.

Finally, the description of the attack permits us to identify the target of the attack,

which is the SCA.

The next Table shows the final result of the classification.

Goal: D1-CAT2: Unauthorized use of the signature creation data (SCD)
Method: D2-CAT4: Unauthorized invocation of the signing function →

D2-CAT4.1: Compromise of the signer authentication data (SAD) →
D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.3: Endpoint compro-
mise

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-CAT2.1.2: Re-
lated application → D3-CAT2.1.2.2: SCA

It is important to highlight that every method is subject to the subjectivity of the

user in charge of the classification. Even when the available information of the attack

is very detailed, two different users can reach contradictory conclusions. The training,

skills and perspective of the user are paramount to make the correct decision. Even

sometimes there is not only a single correct decision, but many.

For example, the same attack can be correctly classified in two different manners

depending on the viewpoint taken. An attack that injects dynamic content into the

document to be signed can be classified according to the goal dimension as D1-CAT1:

Deceive the signer to sign a document different than the intended one or under unin-

tended conditions, if the attacker is not the signer, and the user concludes that the

process being subverted is the signature generation, or as D1-CAT5: Make the Data

To Be Verified (DTBV) be shown with chosen content, if the attacker is the signer itself

or a different malicious entity, but the user considers that the process being subverted

99

6. A TAXONOMY OF ATTACKS ON DIGITAL SIGNATURES

is the signature verification. Possibly, the goal pursed by the attacker is both of them,

that is, both deceiving the signer respecting the information being signed and deceiving

the verifier respecting the information signed.

The method proposed herein intends to reduce the ambiguity during the classifica-

tion procedure, but we do not claim that the method is deterministic, since we consider

that it is not possible in this inexact field of study.

6.6 Chapter Summary

In this Chapter we have proposed the first holistic taxonomy of attacks on digital signa-

tures, including attacks on the generation and verification phases. This taxonomy will

help developers to build digital signature technology more robust and resilient to cur-

rent threats, as the knowledge has been categorized in a manner that permits devising

general countermeasures independently of the particular technology or implementation

being used.

The context of the taxonomy has been defined following a threat modeling approach,

delimiting the boundaries, restrictions and assumptions under which this taxonomy

might be useful and applicable. In addition, a method of classification has been provided

to permit the systematic classification of an attack on digital signatures according to

the taxonomy.

100

Chapter 7

Division of the Signature

Environment

In this Chapter we present a new paradigm to effectively enhance the reliability of

digital signature-based evidence. Firstly, Section 7.1 provides an overview of our novel

approach. The specific security mechanisms that permit its implementation and other

practical issues are given in Section 7.2. Finally, we conclude the Chapter in Section

7.3.

7.1 Overview

In this Chapter we evolve the split trust paradigm analyzed in Chapter 5 to a more rigor-

ous model in order to substantially reduce the probability of an attack that may subvert

the reliability of digital signature-based evidence. Current split trust paradigm shifts

all sensitive operations to a single trusted environment. As the analysis of the state

of the art demonstrates that no environment can be sufficiently trusted, we propose to

divide the evidence generation and verification processes into several environments, all

of them untrusted. In a nutshell, we apply the famous Caesar’s quotation Divide et

vinces. As a result, by increasing the number of environments needed in conjunction

to generate and verify the evidence, the reliability of the evidence itself is enhanced.

In case of evidence generation, each environment generates one or more digital

signatures that are part of non-repudiation evidence. Evidence cannot be enforced

as such until every signature is generated. Consequently, evidence is not based on a

single signature anymore but multiple signatures. In case of evidence verification, the

verification process is considered as reliable in case every environment, or a minimum

number established as the threshold, reaches the same conclusion about the evidence

validity. In both cases, more than one environment is mandatory to complete the

101

7. DIVISION OF THE SIGNATURE ENVIRONMENT

generation or verification processes. Obviously, there must be a trade-off between the

added complexity and the security improvement.

However, how do we know that certain signature has been generated from a partic-

ular environment, and as a result the division principle has been enforced? A digital

signature is generated by the signer using his signature creation data (SCD). But, in

general, a SCD can be indistinctly used at any environment. As a result, a mecha-

nism to bind certain SCD with a particular environment is absolutely necessary. If the

SCD is bound with a particular environment E, then it can be ascertained that any

digital signature generated with that SCD has been generated at environment E. This

Chapter deals with this necessity, and proposes some solutions to fulfill it.

From here on, environment corresponds to a signature environment (e.g. a PC, a

mobile device, etc.), being either a signature creation environment, a signature verifi-

cation environment, or both. Evidence subject is the end user the generates the digital

signature-based evidence, while evidence user is the end user or end users that verify

the digital signature-based evidence. Following definitions also apply for the remainder

of the Chapter:

Definition 1. We define evidence establishment as an action by which either the

evidence subject creates the evidence or the evidence user verifies the evidence. We

consider evidence that consists of digital signatures. Therefore, evidence establishment

implies either a signing operation on certain data or a digital signature verification

operation.

Definition 2. An attack on an environment is an attack carried out by a malicious

agent (active intruder or resident malware) which purpose is to obtain some benefit from

the evidence establishment capabilities of that environment. Potential attacks that may

be carried out by the malicious agent include those defined in the taxonomy of attacks

of Chapter 6.

Definition 3. The probability of a successful attack (PSA) on an environment

depends on both the probability of a malicious agent (attacker) to gain access to that

environment (undermine the environment’s security measures) and the probability of

that attacker to subvert the specific security measures implemented by the environment

to protect the evidence establishment capabilities.

7.2 Implementing the Division Principle

The signature environment division principle has several practical implications, as non-

repudiation evidence is now based on multiple digital signatures. In this Section a guide

102

7.2 Implementing the Division Principle

for implementing the division principle is given, including the security mechanisms to

generate and verify multi-signature based evidence.

7.2.1 General rules

During evidence generation, evidence subject must use more than one environment

to generate the digital signatures that are part of the non-repudiation evidence. Each

environment can be used to generate one or more signatures. The degree of reliability

in the generation process depends on the number of environments used to produce the

resultant evidence, and the PSA of each one (if known). Due to evidence nature and

meaning (see Chapter 3), the evidence subject must be the same along the different

environments used, as evidence is used to establish proof about an event or action,

which traces back to a single origin.

During evidence verification, evidence user must use more than one environment

to verify the evidence. Evidence may be partially verified, if it has not been completed

yet, or completely verified, otherwise. The verification (partial or complete) must be

performed in each environment. The degree of confidence in the actual validity of evi-

dence depends upon the number of environments used, the PSA of each one (if known)

and the results obtained in each verification. Depending on the transaction context,

it can be established a minimum number of coherent verification results (threshold) or

oblige that every verification reaches the same conclusion. More than one evidence user

may participate in a collaborative manner during evidence verification.

The security mechanism that permits to implement a multi-signature based evidence

consists of using parallel, sequential and/or embedded electronic signatures:

• Parallel signatures are applied on the same piece of information. They are mutu-

ally independent signatures where the order of the signatures is not important.

• Sequential signatures differ from parallel signatures in that the order is significant.

• Embedded signatures imply that one signature is applied to another. The se-

quence in which the signatures are applied is important and there is a strong

interrelationship.

Current standardized electronic signature formats support the generation of any of

these types of signature, including the generation of complex trees of signatures where

parallel, sequential and embedded signatures may co-exist.

103

7. DIVISION OF THE SIGNATURE ENVIRONMENT

Figure 7.1: Chaining mode evidence generation scheme using sequential signatures.

7.2.2 Security mechanisms for evidence generation

This Section details the security mechanisms that can be used to generate a multi-

signature based evidence following the division principle. Evidence subject must be

the same along every environment used.

7.2.2.1 Chaining mode

In the chaining mode, the generation of the digital signatures which the evidence con-

sists of must follow a certain order respecting the environments being used. Figure

7.1 represents the chaining mode scheme to generate evidence that consists of multiple

sequential signatures.

As can be seen in the Figure, evidence subject starts the chain of signatures at envi-

ronment E1, by generating the first signature ds 1(data) over some data. The way the

data is generated or obtained is irrelevant, provided that the signing process is carried

out within E1 boundaries. Subsequently, evidence subject transmits the data along

with ds 1(data) to the second environment E2, where the second signature ds 2(data)

is generated, and so forth until the last environment En produces the last signature

ds n(data). Again, the specific means used to transmit such information between en-

vironments are irrelevant. The evidence subject may have physically transmitted the

104

7.2 Implementing the Division Principle

information by using a portable storage device or may have sent it through the net-

work. The evidence subject may also receive such information from a different entity,

due to a certain network or application protocol in which both participate. In any case,

the order in which the environments are used, and thus the sequential signatures are

generated, is paramount to generate valid evidence.

In the scheme shown in Figure 7.1, every digital signature corresponds to a se-

quential signature, as all of them are applied on the same piece of information (data).

Parallel signatures cannot be used in this scheme as they are, by definition, order-

independent signatures. However, a second scheme where embedded signatures are

used is valid as well, as depicted in Figure 7.2. Due to the strong interrelationship

between embedded signatures, the order followed for evidence generation is also funda-

mental to produce valid evidence.

Figure 7.2: Chaining mode evidence generation scheme using embedded signatures.

7.2.2.2 Independent mode

In the independent mode, the evidence generation process does not need to follow

a certain order respecting the environments being used. Next Figure 7.3 represents

the independent mode scheme to generate evidence that consists of multiple parallel

105

7. DIVISION OF THE SIGNATURE ENVIRONMENT

signatures. This type of signature is recommended for this scheme mode, as parallel

signatures are mutually independent signatures where their order is not important.

Figure 7.3: Independent mode evidence generation scheme using parallel signatures.

As shown in the Figure, each environment receives the same piece of information

(data) on which the corresponding signature is generated. The resultant evidence will

consist of all the signatures generated by every environment, along with the signed

data.

7.2.3 Security mechanisms for evidence verification

This Section details the security mechanisms that can be used to verify a multi-signature

based evidence following the division principle. It should be noted that there could be

more than one evidence user along the different environment used and that collaborate

during the evidence verification.

7.2.3.1 Chaining mode

In the chaining mode, and like during evidence generation, the evidence verification

process must follow a certain order respecting the environments being used. Next Figure

7.4 depicts the evidence verification scheme when a chaining mode is applied. Evidence

can be based on parallel, sequential or embedded signatures. Like in evidence generation

following the chaining mode, the means used to transmit the evidence between the

environments is not important, provided that the order is maintained.

It should be mentioned that evidence verification can be performed either once

evidence is complete or during an evidence generation procedure, to ascertain that

evidence is being generated properly. In the latter, and if evidence is being generated

following a chaining mode scheme, as shown in Figures 7.1 and 7.2, its content changes

from intermediate states, where the first and subsequent signatures are incorporated,

to the final state, where the complete evidence is consolidated with the last signature.

106

7.2 Implementing the Division Principle

Figure 7.4: Chaining mode evidence verification scheme.

Therefore, during partial evidence verification each environment will verify the evidence

in a different state. In any case, the accumulative nature of the chaining mode in the

evidence generation process makes that, in a further environment, previous signatures

are always verified again along with the new ones. Also, and contrary to the evidence

generation case, there can be more than one evidence user that shared their validation

results to achieve a collaborative evidence verification.

In order to consider the evidence as valid, the minimum number of environments

at which the result of the verification must be satisfactory has to be specified. This

number is called the threshold, and can vary from at least 2 to the total number of

environments used. This condition should be defined in the non-repudiation policy in

effect, and is formally defined as follows:

∃ N ⊂ M / ∀ x ∈ N, xi = 1, i = 0...n (7.1)

Where M is the set of environments used to verify the evidence, and n is the

threshold. If n is equal to the size of set M , then every environment must conclude

with a satisfactory evidence verification (represented as xi = 1) in order to consider

the evidence as valid.

The threshold condition must be dynamically adapted depending on the verification

stage, that is, a partial evidence verification or the complete evidence verification. For

instance, in case of using 5 environments to verify the evidence, and during the partial

107

7. DIVISION OF THE SIGNATURE ENVIRONMENT

evidence verification at the third environment, the threshold can have, at maximum,

the value of 3.

7.2.3.2 Independent mode

In the independent mode, the evidence verification process does not need to follow

a certain order respecting the environments being used. Next Figure 7.5 shows the

evidence verification scheme in case an independent mode is used. Like in a chaining

mode evidence verification, evidence can be based on parallel, sequential or embedded

signatures.

Figure 7.5: Independent mode evidence verification scheme.

In this scheme, evidence being verified will normally correspond to a complete

evidence, though it could happen that different environments verify partial evidence

in different states, like in the chaining mode. Likewise, there can be several evidence

users that share their validation results to achieve a collaborative evidence verification.

The threshold condition must also be specified like in Section 7.2.3.1.

7.2.4 Combination of schemes

Any combination of the schemes explained in Sections 7.2.2.1 and 7.2.2.2 is possible.

Therefore, a particular scheme where parallel, sequential and embedded signatures co-

exist to produce non-repudiation evidence can be implemented. The evidence subject

will have to take into account the order of the environments when required (i.e. se-

quential and embedded signatures).

On the other hand, as evidence verification implies that every signature that is

part of evidence (in its current state) is verified - against data in case of parallel or

sequential signatures, or against another signature in case of embedded signatures -,

108

7.2 Implementing the Division Principle

then the number and type of the signatures are transparent to the type of evidence

verification scheme being used.

7.2.5 The binding between the environment and the signature cre-

ation data

Previous Chapter 6 identified a set of assets to protect, as they are the principal elements

involved in a digital signature process. All of them, except the signature creation

system and signature verification system, are generally independent of the environment.

That is, they can be created or managed in any environment with digital signature

capabilities. For instance, the signature creation data (SCD) can be stored in a software

signature creation device or a hardware signature creation device, like a smart card. In

both cases, the signature creation device (SCDev), and thus the SCD it contains, can

be potentially used or imported into any environment.

Every environment is subject to suffer security threats with a given probability. As

explained above, the division principle relies on the lower probability achieved when

several environments are used in conjunction to produce non-repudiation evidence. The

problem lies in that the reliability enhancement is achieved in this proposal thanks to

the usage of several environments, but each required digital signature is generated by

using certain cryptographic data (i.e. SCD) not initially bound with any environment.

Current standards on digital signatures do not address how to record information

of the environment where a digital signature has been generated. We could define a

particular signed attribute for an advanced electronic signature format where a unique

identifier of the environment was included. But this information is easily forged by an

attacker once the identifier is known. In other circumstances, the environment can be

inferred, like, for example, if a mobile device with a cryptographic card is used. The

SCDev (and thus the SCD) and the environment are physically linked to each other.

But, in many other situations, the linkage between the SCD and the environment

cannot be established.

In general, the SCD can be indistinctly used at any environment (e.g. when using

smart cards or SCD stored in software). If the user used the same SCD in several

environments, it would give an attacker that subverted the security of one or few of

those environments the chance to compromise or access the SCD, or invoke the signing

functionality when the SCD is available (see Chapter 6 for a detailed description of

possible goals pursued by the attacker). Therefore, the attacker would be capable of

generating all signatures that are required for producing the valid evidence. Moreover,

in case every SCD was retrieved (attack method D2-CAT5: Compromise of the signa-

ture creation data (SCD)), the attacker could even use his own environment to compose

109

7. DIVISION OF THE SIGNATURE ENVIRONMENT

the evidence. In conclusion, the lack of binding between the environment and the SCD

makes the division of the signature environment useless.

Consequently, it is absolutely necessary to uniquely bind each SCD with a given

environment, in a manner that evidence produced completely depends on the environ-

ments established to implement the division principle. We propose two possibilities to

resolve this issue, and which are explained next.

7.2.5.1 By procedure

In the first approach, the binding between a SCD and an environment is purely pro-

cedural. The user is obliged by the non-repudiation policy in force to use a different

SCD in each environment. As no technical mechanism is implemented to enforce the

binding, the guarantee relies on the correct behavior of the user. However, the non-

repudiation policy, if established by a competent authority, can include a statement by

which any user that adheres to the policy (probably signing a contract with the afore-

mentioned authority) and that is suspected to have failed to fulfill the requirements

established in it (i.e. not using a different SCD in each environment) will be bound to

the non-repudiation evidence generated in a given transaction where the policy applies.

This measure would prevent users from obtaining a benefit in case they claimed, with

no further proof, that they followed the binding by procedure requirement when they

actually did not.

In a binding by procedure approach, there would be one or more SCD bound with

each environment. In any case, each SCD must not be shared between different envi-

ronments. Therefore, in a scenario of n environments, the user must own, at least, n

different SCD.

Though an attacker compromised n − 1 environments, and thus n − 1 SCD, he

would not be able to produce the valid evidence as he would lack of the nth SCD. For

that purpose, the user must assure that one SCD is not used out of the boundaries of

the associated environment. Otherwise, the division principle is broken. As a single

SCDev can store several SCDs, each SCD of these n SCDs must be stored in a different

SCDev, avoiding that the same SCD is available at different environments when using

the SCDev.

For instance, let’s consider the next example, where there are three environments

and the user owns three different SCDevs, with a different SCD each:

110

7.2 Implementing the Division Principle

Environment E1

Environment E2

Environment E3

User U with SCD SCDU1

User U with SCD SCDU2

User U with SCD SCDU3

In order to enforce the division principle, the next bindings between the user’s SCDs

and the environments are imposed:

E1 with SCDU1

E2 with SCDU2

E3 with SCDU3

In case of a chaining mode scheme (see Section 7.2.2.1) (a) and an independent

mode scheme (see Section 7.2.2.2) (b), valid evidence consists of:

Evidence = data, SE3
SCDU3

(
SE2

SCDU2

(
SE1

SCDU1
(data)

))
(a)

Evidence = data, SE1
SCDU1

(data), SE2
SCDU2

(data), SE3
SCDU3

(data) (b)

7.2.5.2 By environment attestation

Another solution consists of making the environment attest to the signatures that are

generated within its boundaries. That is, the environment would possess its own SCD,

which would be used to “certify” those signatures, by, for instance, countersigning them.

There should be an association of user SCD with environment SCD in a manner that

if an environment attests to a signature generated with a user’s SCD not bound with,

then the resultant attested signature is not valid. In this case, the number of user’s

SCDs could be lower, as the attestation signature from the environment is mandatory.

For instance, let’s consider the next example, where there are three environments

and the user owns a single SCDev-SCD:

Environment E1 with SCD SCDE1

Environment E2 with SCD SCDE2

Environment E3 with SCD SCDE3

User U with SCD SCDU1

111

7. DIVISION OF THE SIGNATURE ENVIRONMENT

In order to enforce the division principle, the next bindings between the user’s SCD

and the environments are imposed:

SCDE1 with SCDU1

SCDE2 with SCDU1

SCDE3 with SCDU1

In case of a chaining mode scheme (see Section 7.2.2.1) (a) and an independent

mode scheme (see Section 7.2.2.2) (b), valid evidence consists of:

Evidence = data, SSCDE3

(
SE3

SCDU1

(
SSCDE2

(
SE2

SCDU1

(
SSCDE1

(
SE1

SCDU1
(data)

)))))
(a)

Evidence = data, SSCDE1

(
SE1

SCDU1
(data)

)
, SSCDE2

(
SE2

SCDU1
(data)

)
,

SSCDE3

(
SE3

SCDU1
(data)

)
(b)

As can be seen, the user only needs to own a single SCDev-SCD. It is the en-

vironment attestation technique what guarantees the implementation of the division

principle. If the user owned more than one SCD and made a mistake and uncon-

sciously used certain SCD in an environment not bound with, the resultant evidence

would not be valid.

As a result, a solution based on environment attestation assures that an attacker

that compromises the user’s SCDs but uses them out of the corresponding environment

will not obtain any benefit from it. To subvert this solution, an attacker must:

• Either compromise every SCD of the user and the SCD of each environment,

and produce the valid evidence accordingly using any desired environment (e.g.

possibly his own one).

• Or compromise every SCD of the user but use each one from the corresponding

associated environment.

The result is that, in both cases, the attacker still needs to compromise every

associated environment to produce valid evidence. In the first case, obtaining the envi-

ronments’ SCD. In the second case, producing the evidence from those environments,

what also implies compromising their security.

The environment attestation can be put into practice using the Trusted Computing

Module (TPM) [226] or the Mobile Trusted Module (MTM) [227].

112

7.2 Implementing the Division Principle

7.2.6 Some remarks

Some important remarks about implementation issues are given next.

7.2.6.1 Conscious data verification

In the schemes explained above, the evidence subject must be sure that the data over

which the digital signatures are being generated is the desired one and the same along

every environment (e.g. an attacker has not modified the data during transit). Other-

wise, parallel and sequential digital signatures may still be cryptographically valid but

evidence regarding the data could become inconsistent (different signatures generated

over different data). To avoid such situation, and as mentioned above, partial evidence

verification is recommended during its generation.

Because no environment is trusted, we cannot assume the existence of a trusted

path from one environment to another (i.e. in chaining mode schemes), or between the

entity that provides the data and the environments (i.e. in independent mode scheme).

As a result, the data must be consciously known by the evidence subject 1, who can then

evaluate whether the received data and that has been processed by other environments

corresponds to the desired data. Obviously, an attacker can modify the visualization

of fraudulent data in a certain environment to force its matching with the expected

data. But the division principle guarantees that, if sufficient environments are used,

a malicious action during evidence establishment will be detected with a probability

substantially higher than if only one environment was used.

7.2.6.2 Restricted format of data to be signed

In the taxonomy proposed in Chapter 6, attack categories D2-CAT2.1.1: Dynamic

content inclusion and D2-CAT2.2.1: Dynamic content inclusion cover attack methods

that include dynamic content into the document or attributes to be signed, what per-

mits the attacker to maintain the document’s integrity while varying its semantic. On

the other hand, attack category D2-CAT3.1: External content includes methods that

permit an attacker to modify information referenced from the signed information, like

the XSD or other documents.

As document formats are getting more and more complex, the capabilities of pro-

ducing semantically different representations of the same document increase. Hidden

code, active code or linked content are features that many document formats permit

nowadays. An attack could very easily trick the evidence subject during the conscious

1An end user according to the thesis context

113

7. DIVISION OF THE SIGNATURE ENVIRONMENT

data verification by performing attacks D2-CAT2.1.1: Dynamic content inclusion, D2-

CAT2.2.1: Dynamic content inclusion or D2-CAT3.1: External content, undermining

the improvement pursued by the division principle.

We claim that no document with a complex or rich format can guarantee its semantic

integrity. Therefore, in addition to the division of the signature environment, the format

of the data to be signed should be restricted to static file formats, such as plain ASCII.

7.3 Chapter Summary

We claim that an untrustworthy environment cannot generate reliable signatures, and

thus cannot enforce the non-repudiation of digital signature-based evidence. A single

signature environment will have a higher or lower probability of suffering an attack,

but the probability is never zero. As every new proposal is always welcomed with a

new attack, a completely different approach must be taken.

Under the division paradigm, non-repudiation evidence consists of several signatures

generated at different environments. In the same manner, the verification of a multi

signature-based evidence must be performed at several environments, increasing the

level of confidence in the verification result. The security mechanisms and additional

issues for a practical implementation have been detailed. Our proposal does not require

a change in current hardware architectures nor trust in third parties for the generation of

evidence. It can be implemented entirely in software, complying with current pervasive

computing necessities. In addition, the signature division paradigm could be combined

with other security enhancing proposals (e.g. usage of a TPM architecture in each

environment certified according to a certain Common Criteria Evaluation Assurance

Level) to increase the reliability of evidence.

The division paradigm may be specifically applied to a wide variety of Internet

protocols, like e-commerce or contract signing protocols, where several signatures must

be performed by each participant.

114

Chapter 8

Extended Electronic Signature

Policies

In this Chapter a new electronic signature policy is presented, and that extends the

boundaries of the current electronic signature policy definition in a way that several

signatures generated under a single transaction can be managed, and their relationships

established. This new extended signature policy meets a current necessity and provides

a solution for a general problem that cannot be covered by current policy definition. In

addition, our extended policy resolves the particular problem derived from the division

paradigm, permitting its implementation.

The extended electronic signature policy is defined in Section 8.1 using ASN.1 no-

tation (see Appendix E for the XML-based definition). The procedures required for

the generation and verification of signatures according to the extended signature policy

are given in Section 8.2. This Section also includes the guidelines and proposals for

the integration of the extended policy into current standards. Finally, the Chapter is

concluded in Section 8.3.

8.1 Policy Definition

This Section proposes an extended signature policy (ext-SP) that allows the manage-

ment of a set of signatures generated in a single transaction. We have taken the ETSI

technical report on signature policy for extended business model [72] as the reference

document that collects the high level requirements.

Though our proposal covers the most important aspects contained in [72], we con-

sider that some of them cannot be transposed to an automatically processable document

(e.g. ASN.1, XML). For instance, the umbrella approach outlined in Section 10.4 of

[72] describes the signature policy and technical rules (Section 10.4.2) that are almost

115

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

impossible to define in generic data structures. They cover so many different busi-

ness and application domains that their specification should be done in free text form

documents rather than in formal languages.

The ext-SP has been designed taking into account three different levels of abstrac-

tion:

Business Level. The first level defines the business and transactional contexts that

apply to the signatures generated according to this policy.

Inter-relationships Level. The second level establishes the signatures that must be

present in order to give legal effectiveness to the transaction as well as the rela-

tionships and dependences that are accepted among those signatures.

Atomic Level. In the third level, the requirements to be fulfilled by each signature

on its own are defined. In practice, this level is implemented by current signature

policies.

The definition of the ext-SP is contained in next Sections. For each data structure,

and for clarity purposes, only the ASN.1 type definition and an example (if it con-

tributes to understand the definition) are given. Appendix E contains both the ASN.1

module and the XML Schema Definition (XSD). Please refer to them for the analog

XML elements definitions.

From here on, we refer to current signature policy definition [71, 203] as signature

policy, and to the policy proposed herein, the extended signature policy or ext-SP.

8.1.1 Base structure

The next ASN.1 type defines the base of the ext-SP, and consists of the field extSign-

PolicyInfo and the field extSignPolicyProtection.

ExtSignaturePolicy ::= SEQUENCE {

extSignPolicyInfo ExtSignPolicyInfo,

extSignPolicyProtection ExtSignPolicyProtection OPTIONAL

}

The whole information about the ext-SP is collected in the extSignPolicyInfo field,

which ASN.1 type is the next one:

ExtSignPolicyInfo ::= SEQUENCE {

extSignPolicyIdentifier ExtSignPolicyIdentifier,

extSignValidationPolicy ExtSignValidationPolicy,

extSignContext [0] ExtSignContext OPTIONAL,

extSignPolExtensions [1] SignPolExtensions OPTIONAL

}

116

8.1 Policy Definition

On the other hand, extSignPolicyProtection field includes the information about

the cryptographic algorithm applied to protect the ext-SP. If this field is not included

in the ext-SP, then an external protection mechanism should be used by the parties

when transmitting the ext-SP through insecure means. More specifically, ExtSignPoli-

cyProtection type is defined as follows:

ExtSignPolicyProtection ::= SEQUENCE {

protectionAlg AlgorithmIdentifier,

protection BIT STRING

}

The protection algorithm, defined in protectionAlg field (AlgorithmIdentifier ASN.1

type, as defined in [57]) must be applied on the DER (Distinguished Encoding Rules)

encoding [124] of the extSignPolicyInfo field. Different cryptographic algorithms could

be used, like hash functions or digital signature algorithms. The ext-SP shall be pro-

tected by other means if the applied protection algorithm does not suffice in certain

circumstances - a hash function does not prevent an attacker from modifying the ext-SP

content if it is transmitted through insecure means, like a TCP/IP connection with-

out SSL/TLS. If a digital signature algorithm is used (e.g. sha1withRSAEncryption),

then the digital signature value will be encoded in the protection field. In this case,

the digital certificate that wraps the public key corresponding to the signing private

key must be provided by other means. The subjectDN field of the certificate should

correspond to the policyIssuerName further defined.

The next Sections describe the fields indicated in the ExtSignPolicyInfo ASN.1 type.

It should be noted that, following current standards philosophy, an optional extension

field named extSignPolExtensions of SignPolExtensions ASN.1 type (as defined in [73,

203]) is included for future needs in most of types defined herein.

8.1.2 Policy identifier

The ext-SP must be uniquely identified by both signers and verifiers. The extSignPol-

icyIdentifier field of ExtSignPolicyIdentifier ASN.1 type is included for that purpose:

ExtSignPolicyIdentifier ::= SEQUENCE {

extSignPolicyId ExtSignPolicyId,

dateOfIssue GeneralizedTime,

policyIssuerName GeneralNames,

extSigPolicyQualifiers [0] SEQUENCE SIZE (1..MAX) OF SigPolicyQualifierInfo

OPTIONAL,

extSignPolExtensions [1] SignPolExtensions OPTIONAL

}

117

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

The extSignPolicyId field is an Object Identifier (OID) that uniquely identifies this

ext-SP among all policies issued by the issuer identified by policyIssuerName field.

The dateOfIssue field indicates the date when this policy was issued. Finally, the

extSigPolicyQualifiers field includes additional qualifying information, like the location

where the ext-SP can be retrieved from. Its SigPolicyQualifierInfo type is defined in

[74, 187].

An example of ExtSignPolicyIdentifier is given next:

extSignPolicyIdentifier {

extSignPolicyId = { 1 0 }

dateOfIssue = 19970717103000

policyIssuerName[0] {

uniformResourceIdentifier = jlopez.thesis.uc3m.es/Issuer

}

}

8.1.3 Validation policy

The field extSignValidationPolicy of ExtSignValidationPolicy ASN.1 type is the core of

the ext-SP, and describes the rules and conditions to be fulfilled by the set of signatures

in order to give effectiveness to the transaction.

ExtSignValidationPolicy ::= SEQUENCE {

signingPeriod [0] SigningPeriod,

treesOfSolutions [1] TreesOfSolutions,

extSignPolExtensions [2] SignPolExtensions OPTIONAL

}

The signingPeriod field is of SigningPeriod ASN.1 type (as defined in [73, 203]),

and identifies the period of time before and after which the ext-SP should not be used

for creating signatures under this policy. It should be noted that a set of signatures

created under a valid ext-SP can still be verified against the policy after its expiration

date.

The treesOfSolutions field, further detailed, contains a set of graphs where each one

represents a tree of signatures that defines the dependences and relationships among

them. This field implements the Inter-relationships Level mentioned at the begin-

ning of Section 8.1.

An example of ExtSignValidationPolicy is given next:

extSignValidationPolicy {

signingPeriod {

notBefore = 19970717103000

118

8.1 Policy Definition

notAfter = 20170717103000

}

treesOfSolutions[0][0] {

...

}

}

Trees of Solutions

Taking into account the three types of signatures (parallel, sequential, embedded), it

is obvious that a tree can be derived from the generated set of signatures. A tree is

a connected graph with n vertices (nodes) and n − 1 edges, and thus where there are

no cycles. In particular, the tree used to represent the set of signatures has the next

specific properties as well:

• The tree is a rooted tree in which the root node (level 0) represents the original

signed document and the rest of nodes correspond to signatures.

• The edges have a natural orientation away from the root. The tree expands from

the root towards the leaf nodes, which are nodes with no child.

• The graph is unweighted, that is, there are no edge weights.

• The tree is irregular: each node (signature) not being a leaf node can have a

different positive degree, that is, it can have as many children as needed. Leaf

nodes have positive degree 0.

• Every node has a negative degree 1 (number of parent nodes), except the root

node which has negative degree 0.

Figure 8.1 depicts a generic set of signatures in tree form. Signatures in level 1 of

the tree correspond to Primary Signatures (PS), which are either parallel or sequential

signatures. The rest of signatures correspond to CounterSignatures (CS), which are

embedded signatures that can be applied to either a PS or another CS. Besides, signa-

tures which are children of the same parent behave as PS among them. The difference is

that the signatures are applied to another signature instead of the document. Though

the arrows follow a top-down direction (for search purposes), a signature in level n is

applied to the parent signature in level n− 1.

This first approach would seem valid to implement any multisignature based trans-

action. However, we have noticed that, in certain scenarios, more than one tree of

signatures can make the same transaction be legally effective. It is the case of fair ex-

change [95, 197] and fair non-repudiation [142] protocols, where the transaction can be

119

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

Figure 8.1: A generic tree of signatures.

finished (become effective) either by completing the main protocol or one of the speci-

fied subprotocols. Many other scenarios can be customized to follow this approach. For

instance, an e-commerce protocol where two parties must sign a document can decide

to either countersigning each others signature or let an authorized e-notary to do it.

In order to support this type of transactions, the Trees of Solutions (TSo) consists

of a sequence of trees, each of which (named TSi) as represented in Figure 8.1. During

the validation stage (see Section 8.2.2), the verifier must check if the multisignatures

evaluated match one of the trees defined in TSo. The transaction is made effective

providing that one tree is completely satisfied.

TreesOfSolutions ::= SEQUENCE OF treeOfSignatures TreeOfSignatures

TreeOfSignatures ::= SEQUENCE OF signature Signature

The Signature ASN.1 type defines the information of a particular node (signature)

in a tree of signatures:

Signature ::= SEQUENCE {

identifier INTEGER (0..MAX),

signer INTEGER (0..MAX),

acceptableSignPolicies AcceptableSignPolicies,

120

8.1 Policy Definition

allowedCommitmentTypes SelectedCommitmentTypes,

counterSignatures [0] TreeOfSignatures OPTIONAL,

timingAndSequence [1] TimingAndSequence OPTIONAL,

extSignPolExtensions [2] SignPolExtensions OPTIONAL

}

Each node (signature) is uniquely identified by the identifier field. This information

is used to specify timing and sequence dependences, as shown further. The signer that

must perform this signature is uniquely represented in a figurative sense by the signer

field. No signer specific information can be used (e.g. subject distinguished name or

subject alternative name) as the ext-SP issuer does not know a priori which signer will

actually perform the signature. A signer can appear in as many signatures of the tree

as needed, but signatures to be generated by different signers must contain different

signer values.

The acceptableSignPolicies field contains the signature policies (SP) OIDs [73, 203]

that can be used by the signer when creating this signature. This field implements the

Atomic Level mentioned at the beginning of Section 8.1.

AcceptableSignPolicies ::= SEQUENCE OF signPolicyId SignPolicyId

SignPolicyId ::= OBJECT IDENTIFIER

The allowedCommitmentTypes field restricts the commitment types that can be

assumed by the signer when producing this specific signature. This field is of Selected-

CommitmentTypes ASN.1 type (as defined in [73, 203]). These commitment types must

be consistent with those included in the acceptable signature policies herein indicated.

Each signature can have a finite number of child nodes, which are represented by

a TreeOfSignatures in the counterSignatures field. As a result, the tree is represented

by following a recursive method, in which the leaf nodes of the tree will not have the

counterSignatures field.

The time frame during which a signature must be generated and the sequential

relationships with other signatures are described in timingAndSequence field.

TimingAndSequence ::= CHOICE {

absoluteTimingAndSequence [0] SigningPeriod,

relativeTimingAndSequence [1] SEQUENCE OF RelativeTimingAndSequence

}

The TimingAndSequence type supports the specification of sequential signatures.

It allows any signature to have as many timing and sequence dependences on other

signatures as needed. There are three possibilities:

121

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

• A signature has no actual dependence on any other signature (e.g. primary sig-

natures).

• A signature has no dependence on other signatures but it must be performed

within a period of time (e.g. a primary signature to be performed not before

17/07/1997 00:00:00 GMT and not after 17/07/2007 00:00:00 GMT). We define

this dependence as an absolute dependence.

• A signature has certain dependences on other signatures, either sequential or

embedded. These are considered as relative dependences.

The first case is achieved by omitting the timingAndSequence field of Signature

type above. The second case is implemented by selecting absoluteTimingAndSequence

field in TimingAndSequence type. To define one or more relative dependences, the

relativeTimingAndSequence field must be selected, which ASN.1 type is the next:

RelativeTimingAndSequence ::= SEQUENCE {

pathToRefSignature SEQUENCE OF INTEGER,

maxDelta DeltaTime OPTIONAL

}

The pathToRefSignature field indicates the path of node identifier field values from

a signature located in level one of the tree to the signature with which there is a

timing and sequence dependence. The maxDelta field indicates the maximum time

delay allowed from the referenced signature’s signing time during which this signature

can be performed. That is, this signature must be performed in a period of time defined

by [t0, t0 + maxDelta] where t0 is the referenced signature’s signing time. If this field is

omitted, it means that this signature must be generated after the referenced signature

but with no time limit.

In order to obtain accurate and reliable time references, signatures should be time

stamped, following the requirements specified in the TimestampTrustCondition ASN.1

type [73, 203].

An example of Signature with a relative timing and sequence dependence is given

next. In this example, the signature is the fifth node of the first TreeOfSignatures

contained in the TreesOfSolutions:

treesOfSolutions[0][4] {

identifier = 5

signer = 1

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

122

8.1 Policy Definition

recognizedCommitmentType {

identifier = { 1 2 840 113549 1 9 16 6 1 }

fieldOfApplication {

printableString = Proof of Origin }

}

}

allowedCommitmentTypes[1] {

recognizedCommitmentType {

identifier = { 1 2 840 113549 1 9 16 6 4 }

fieldOfApplication {

printableString = Proof of Sender }

}

}

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

pathToRefSignature[1] = 3

pathToRefSignature[2] = 4

maxDelta {

deltaSeconds = 0

deltaMinutes = 15

deltaHours = 0

deltaDays = 0

}

}

}

}

8.1.4 Business and transactional domains

The context in which the extended signature policy applies is defined in the field

extSignContext of ExtSignPolicyInfo ASN.1 type. This field is of ExtSignContext type,

and implements the Business Level mentioned at the beginning of Section 8.1:

ExtSignContext ::= SEQUENCE {

businessApplicationDomain [0] SigPolicyQualifierInfo OPTIONAL,

transactionalContext [1] SigPolicyQualifierInfo OPTIONAL,

disputeResolution [2] SigPolicyQualifierInfo OPTIONAL,

audienceConditions [3] SigPolicyQualifierInfo OPTIONAL,

extSignPolExtensions [4] SignPolExtensions OPTIONAL

}

123

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

The businessApplicationDomain field outlines the business domain in which the ext-

SP is suitable for use, e.g. sale of goods/international trade transactions, e-Government

transactions between citizens and e-Administration, e-health services, etc. It covers

high-level and sector-oriented domains. On the contrary, the transactionalContext field

provides additional information about the transactional context (e.g. draft of a con-

tract, purchase by means of online service, exchange of design documents, etc.). This

information should match with the fieldOfApplication field of each signature policy,

described in SignPolicyInfo ASN.1 type [73, 203].

Disputes on a specific event or action taken by any party in a transaction may arise

in a future. A dispute must be resolved by a third party with authority to do so, taking

as information for the resolution the evidence generated in the transaction. Electronic

signatures may act as non-repudiation evidence if adequate policies used by the parties

enforce them. In that case, the third party must consider if the conditions established

for the transactions have been fulfilled by the parties. The dispute resolution procedures

are contained in the disputeResolution field. It allows the ext-SP issuer to specify a

binding text to be considered by the parties when using this policy for generating and

validating signatures, and by the third party for resolving a dispute.

Finally, audienceConditions states the conditions under which a signature may be

relied upon, e.g. the signature only valid in a specified jurisdiction, where laws exist

which recognize the legal validity of signatures created under conditions as specified in

the policy. This field may include provisions relating to the intended effectiveness of

signatures, where multiple signatures are required, e.g. the signature must be counter-

signed to be relied upon.

Each field (except the extension field) is of SigPolicyQualifierInfo ASN.1 type, de-

fined in [74, 187]. Therefore, the information for each field could be available at a Web

URI or URL reference (specified by SPuri type of qualifier), or explicitly contained in

the qualifier through the SPUserNotice qualifier, which may contain a reference to the

organization notice and an explicit text. Please refer to Section 5.8.1 of [74, 187] for

further information.

An example of ExtSignContext is given next.

extSignContext {

businessApplicationDomain {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Sale of goods/international trade transactions }

}

}

124

8.1 Policy Definition

transactionalContext {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Purchase Order/Acceptance in relation to

a book purchase order made through Alice Bookshop Internet

Web page between Alice Bookshop and a client of Alice Bookshop }

}

}

disputeResolution {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Any disputes arising under this policy

shall be referred to a suitably qualified expert, whose

decision shall be final and binding upon the parties,

provided that this signature policy imposes the constraints

under which any signature created under it shall be valid.

The dispute resolution procedure shall be carried out in a

European court with appropriate responsibilities }

}

}

audienceConditions {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = The digital signature-based evidence is

only valid in a specified jurisdiction, where laws exist

which recognize the legal validity of signatures created

under conditions as specified in the policy }

}

}

}

8.1.5 Signing roles

A signing role is a role allocated to or adopted by a signer, and which defines the

relationship between its signature and the rest of signatures [72]. A signing role is

mainly a Primary Signature (PS) or a CounterSignature (CS).

In our proposal, the signing role is implicitly assigned to a signer by means of the

position that his corresponding signature has in the concrete tree of signatures (TSi).

Therefore, a signature mapped to a node in level one of TSi implies that the signer

125

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

is assuming a PS signing role. Otherwise, the signing role is a CS. This behavior

completely satisfies the requirements respecting signing roles given in Section 9.4.1 of

[72].

8.2 Using the Policy

This Section deals with the steps a signer – Section 8.2.1 – and a verifier – Section 8.2.2

– must follow in order to adhere to this policy. We suppose that a signature application

that supports the ext-SP is available to both signers and verifiers, the ext-SP can been

retrieved by the application, and its integrity, authenticity and validity period verified.

Also, the acceptable signature policies indicated in the acceptableSignPolicies field of

each signature can be retrieved and verified as well.

Finally, the way the extended signature policy can be integrated into current stan-

dard signature formats is given in Section 8.2.3.

8.2.1 The generation process

A proposal for the procedure a signer must follow in order to generate a set of signatures

(SSi) according to the ext-SP is detailed in the next steps. We suppose that the signer

is an end user that owns a device with cryptographic capabilities and a visualization

screen for data representation (e.g. Personal Computer, mobile device, etc.). Some

actions further explained could be skipped in case of automated signing processes, like

those carried out by proxy servers and backend systems, or when the business context

does not require human interaction (e.g. a B2B transaction).

Step 0 - Selection of the data to be signed and policy to use

This step has to be carried out only once by the first signer (or the process in charge of

that), as subsequent signatures will be either Primary Signatures performed over the

same data or CounterSignatures generated over another signature. From that moment

onwards, each signer will be shown the signed data without the possibility of changing

or adding information during the signing process.

Step 1 - Policy information visualization and pre-processing

As a first step, the signer should be shown the ext-SP information, specially the Tree of

Solutions (TSo) data. Because the TSo may contain several Trees of Signatures (TSis),

the application should show every TSi defined therein. The application should also

permit the signer to visualize all the information of each node of the TSis, including

the acceptable signature policies, the allowed commitment types and the timing and

126

8.2 Using the Policy

sequence dependences. Furthermore, the information of the business and transactional

domains contained in the extSignContext field of the ext-SP should be displayed to the

signer.

If a partially generated SSi is already available, the application must show the rele-

vant information of each signature (e.g. signatory, signing time, validation information,

etc.) in a manner that a mapping between the structure of the trees represented by

the TSis and the tree represented by the SSi can be intuitively traced by the signer.

If no SSi is present (it is the first signer), then every node in the first level of the

TSis must be marked as signable. That is, the signer is, a priori, able to perform any

of the Primary Signatures defined in the TSis.

On the other hand, if a SSi is present, then the application should filter those TSis

that are not fulfilled by the SSi. For the rest of TSi (if none, then the pre-validation

fails, and the signer must not be allowed to perform any signature), and as a result of

the partial validation that must have been carried out by the application, the signatures

present in that moment and the signatures that are left to complete the transaction

should be differentiated. In a nutshell, the TSis that are active are those that, until

then, are being fulfilled by the partial SSi. Potentially signable nodes of these TSis

are those not signed yet and that belong either to the first level of the TSis (Primary

Signatures) or to any other level (CounterSignatures) but are children of an existent

signature. It is worth to remember that the signer will be bound to the data selected

by the first signer (see step 0).

It should be mentioned that potentially signable nodes that do not comply with the

timing and sequence dependences must be discarded. For instance, a node must not be

marked as signable if, though conditions above are met, a signature on which the one

to be generated depends on has not been performed yet. Or, if, for example, the time

interval during which the signature must be generated (defined by NotBefore field of

an absolute dependence) is later than the current time. Moreover, if during the ext-SP

pre-processing the application detects that the timing requirements of a TSi node are

impossible to be fulfilled (e.g. the node indicates that the signature must be generated

before 17/07/2007 00:00:00 GMT, but the current date is 17/07/2007 00:15:00 GMT),

then the pre-validation must fail, and the signer must not be allowed to perform any

signature.

Step 2 - Certificate selection

The signer should then be asked to select the digital certificate to use. The certificate

must be selected among available certificates with associated signing private key, and

both software certificates and certificates stored in a hardware cryptographic device

should be supported by the application. Nonetheless, it is the signature policy selected

127

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

by the signer (in step 4) the one which will restrict the usage of one type of certificate

or another. If the selected policy does not accept the certificate, then the whole process

from step 2 to 4 has to be carried out again. Notwithstanding, the extended policy may

also restrict at first instance the certificate to use according to the division and binding

principles explained in Chapter 7. For example, the extended policy may forbid the

signer to select a certificate already used in a previous signature of the partial SSi, if

present.

Step 3 - Candidate nodes

Once the certificate has been chosen, the application must select the nodes that po-

tentially represent the signature to be generated by the signer. These candidate nodes

will be among the signatures that have been previously marked as signable, and can

be from more than one TSi.

The application must extract the subjectDN information from the certificate. This

information represents the digital identity of the signer. Afterwards, the application

must detect if the signer has already performed any signature in the SSi tree. In that

case, the association subjectDN and signer identifier can be done, and the candidate

nodes be easily highlighted (see Section 8.2.2 for further information about the asso-

ciation and matching processes). Otherwise, there may be several possible signers to

which the subjectDN can be associated. The candidate nodes are highlighted anyway.

Step 4 - Node selection

In this step the signer must select the candidate node over which applying the signature.

The data to be signed can be the document (root node) or another signature (see step

0). The signer must also select the type of commitment to make among those available

in the selected node. The application will then allow the signer to select a signature

policy among the policies in the node (acceptableSignPolicies field) that support the

selected commitment type.

Step 5 - Signature computation

Finally, the signer performs the signature. The signature generation process is carried

out according to the signer rules of the selected signature policy, as stated in the

corresponding signerRules field (see [73, 203]).

It should be noted that once the signature is created and added to the SSi, the

number of TSis that are still satisfied by the current SSi may be reduced.

128

8.2 Using the Policy

The signer can abort the generation process at any time before step 5. If, at step

1 or 3, the application obtains a void set of signable or candidate nodes, respectively,

then the generation process must be automatically aborted. This situation implies that

either the set of signatures does not comply with the ext-SP requirements or the signer

cannot generate a compliant signature at that moment based on the selected certificate.

It is important to emphasize that every signature that is already present must be

verified against the ext-SP before allowing the signer to compute the signature. In the

description above, the procedure assumes that it is the application the one in charge of

pre-validating the partial SSi against the ext-SP. However, the verification procedure

could be delegated to a trusted party, if possible. In any case, the party in charge of

verifying the set of signatures must verify the already existent signatures and collect

the required validation data as specified in the verifier rules section of each signature

policy (see [73, 203]).

Finally, the generation process could be automated for simplification purposes, if

necessary, on a case-by-case basis.

8.2.2 The validation process

During the validation stage, the verifier will check if the set of signatures fulfills the

requirements established in the referenced ext-SP, and if each signature is compliant

with its corresponding referenced signature policy.

The next Section 8.2.2.1 provides an overview of the designed validation strategy.

Section 8.2.2.2 describes the pruning methods that have been incorporated. A refine-

ment stage needed to complete the validation process is explained in Section 8.2.2.3.

Appendix C contains the pseudo-code of the algorithm along with the details of the

validation strategy.

8.2.2.1 Approach

Each Tree of Signatures (TSi) belonging to the Trees of Solutions (TSo) and the gener-

ated set of signatures (SSi) represent a tree graph with the properties explained above in

Section 8.1.3. Our validation process combines a Depth-First-Search (DFS) algorithm

to explore the SSi and a modified Breadth-First-Search (BFS) algorithm to locate each

signature of SSi in a TSi. Other strategies different than the proposed one may achieve

the same aim, which is to evaluate if SSi can be mapped to at least one TSi, what

would imply that SSi is compliant with the ext-SP. Furthermore, four different pruning

methods that improve the process performance and effectiveness have been integrated.

Graph search algorithms like BFS or DFS follow an established strategy to explore

a graph or search a node in a graph. In particular, BFS starts at the root node and ex-

129

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

plores all the neighboring nodes. Then, for each of those nearest nodes, it explores their

unexplored neighbor nodes, and so on, until the graph has been completely explored or

the node is found. DFS starts at the root node and explores along each branch until the

leaf nodes before backtracking. It continues until the whole graph has been explored

or the goal node found.

BFS and DFS are combined and modified in order to cope with next particularities:

• We need to search as many nodes in TSi as signatures in SSi, not just one signature

(node).

• Each signature in SSi can be found only in a specific level of TSi. Therefore, we

can apply an important filter in the search strategy. As an example, signatures

located in first level of SSi will be searched only in TSi nodes in level one. Their

children signatures (countersignatures) will be searched only in TSi nodes in level

two, and so forth.

• There is a natural reduction in the number of searching possibilities for a partic-

ular signature. The reason is twofold: a signature can be found in a specific level

of TSi but only in those nodes that are children of nodes matching the parent

signature. Besides, a reduction can be applied to the potential search paths by

means of several types of pruning (see Section 8.2.2.2). The nodes of TSi used by

the algorithm in order to find a signature are called candidate nodes.

• A signature can be matched (found) with more than one candidate node in the

specific level of TSi. Therefore, our algorithm does not stop when a signature

is matched, but when all candidate nodes have been explored. The reason is

that different signers can make the same commitment type and use the same

signature policy when creating their signatures. As a consequence, there is no

way of differentiating which node of TSi better matches with each signature,

except when a pruning is performed (see Section 8.2.2.2).

As a result, SSi is explored by using a DFS strategy that will visit every signature.

Each time a signature is visited, the algorithm tries to match it with the corresponding

candidate nodes of TSi. The candidate nodes are explored by following a BFS strategy,

but with the particularities explained above.

Each signature is represented by a set of information that allows the algorithm to

perform the search. These search parameters are the next:

• The subject distinguished name, which can be retrieved from the SubjectDN

field of the signer’s certificate.

130

8.2 Using the Policy

• The signature policy (OID value) used by the signer when creating the sig-

nature. This value can be obtained from the policy identifier, included in the

signature as a signed attribute. Please refer to Explicit Policy-based Electronic

Signatures (EPES) formats in [74, 187] for further information.

• The commitment type (OID value) made by the signer respecting the signed

information. This information is also included in the signature as a signed at-

tribute. Please refer to EPES formats in [74, 187] for further information.

On the other hand, the TSi node information used by the algorithm for the search

is the following:

• The signer field of a node, which is a representation of the signer of the node.

• The acceptable signature policies, which OIDs are contained in the accepta-

bleSignPolicies field of the node.

• The allowed commitment types, which OIDs are contained in the allowed-

CommitmentTypes field of the node.

Therefore, the algorithm will try to match a signature with the candidate nodes by

using previous search parameters and node information.

Next three end conditions for the algorithm apply:

• If a TSi is completely satisfied after having processed SSi, then SSi represents a

solution, and the transaction is made effective and considered complete.

• If after having completely processed SSi, there is at least one TSi that is partially

satisfied (no deadlock is found), then SSi represents a partial solution that may

become complete if the rest of required signatures are generated. We define a

deadlock as the situation where a signature cannot be matched with any candidate

node, and as a result the search algorithm cannot continue processing the SSi.

• Otherwise, SSi is not compliant with the ext-SP conditions, and the validation

fails.

Definition 1. Providing that the number of signatures in SSi and nodes in TSi

are the same, and the structure of both graphs is the same (homomorphic graphs), a

TSi is completely satisfied if, once the validation algorithm is finished, each signature

of SSi is matched with at least one node in TSi and every node of TSi is matched with

at least one signature of SSi.

131

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

Definition 2. SSi is compliant with ext-SP if at least one TSi is completely

satisfied. The set of signatures can be complete - every signature needed to complete

the transaction has been generated (TSi completely satisfied) - or incomplete - there

are still some required signatures left (TSi partially satisfied).

8.2.2.2 Pruning methods

The aim of the pruning methods is to dynamically reduce during the search the number

of possible nodes that can be matched with each signature. As a result of this on-the-fly

refinement, the number of paths to explore in further steps can be substantially reduced,

improving the computational cost and memory consumption. Besides, pruning methods

can detect a deadlock situation that may not be detected otherwise, or detected in a

later step.

Distribution-based pruning

As commented above, TSis and SSis are trees where each node can have a different

positive degree (except leaf nodes that have positive degree 0) but all of them have

the same negative degree 1 (except the root node that has negative degree 0). Fur-

thermore, the information of a node – and thus a child node – (signer’s identifier, the

allowed commitment types and the acceptable signature policies) can be used to differ-

entiate it from other nodes. In the same way, the information of a signature (subject

distinguished name, commitment type made and signature policy used) can also be

used to differentiate it from other signatures.

The distribution-based pruning makes use of these two facts to prune the candi-

date nodes that can potentially be matched with a signature being analyzed during the

search.

Definition 3. We define the distribution of a node as the number of occurrences

for each dimension (1...n), being a dimension the number of child nodes with the same

identifier (signer identifier for TSi nodes and subjectDN for SSi nodes). That is, a

dimension n means that there are n child nodes with the same identifier. We represent

a distribution as a list of key pairs {1 = a, 2 = b, 3 = c, ...} where the key corresponds

to the dimension and the value is the number of occurrences of that dimension.

Consider the simple tree shown in Figure 8.2. In this example, the root node has four

Primary Signatures, one of them with the subjectDN S0, another two with subjectDN

S1 and the last one with subjectDN S2. Therefore, the number of occurrences for

dimension one is 2, as there are two subjectDN found in just one signature each (S0

132

8.2 Using the Policy

and S2). On the other hand, the number of occurrences for dimension two is 1, as

there is only one subjectDN that appears in two signatures (S1). Consequently, the

distribution for the root node is {1 = 2, 2 = 1}. As can be noted, the distribution of a

node in a tree gives an exact view of its underlying children.

Figure 8.2: Distribution of a tree.

Definition 4. Two nodes are considered structurally equal if and only if their

distributions are the same.

As a result, a signature cannot be matched with a node if their distributions dif-

fer. In order to filter the candidate nodes of TSi that can be matched with a certain

signature of SSi, the algorithm calculates the distribution for each candidate node and

for the signature being analyzed. Only those nodes which distribution matches the

signature distribution are further processed. Obviously, if no candidate node has the

same distribution as the signature, a deadlock occurs. In particular, if the distribution

of the TSi root node differs from the SSi root node, then the SSi does not satisfy the

TSi.

Dimension-based pruning

This pruning is related to the Distribution-based pruning. As explained above, the

dimension corresponds to the number of nodes with the same identifier. In the example

above, node S1 has dimension two because its subjectDN appears twice.

Next Figure 8.3 shows the structure of child nodes for both TSi node n8 and SSi

signature S7. In both cases, the distribution is the same: {1 = 3, 2 = 1}.
Suppose then that signature S7 has been matched with node n8, and thus their

child nodes are analyzed during the exploration of the trees. When a distribution is

calculated, the algorithm also works out the dimensions for the nodes. In the example

of Figure 8.3, next dimensions are obtained for the second level (shown) of the trees:

• TSi: {1 = {n0, n1, n2} , 2 = {n3}}.

133

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

Figure 8.3: Example of a distribution used for a dimension-based pruning.

• SSi: {1 = {S1, S3, S4} , 2 = {S2}}.

Where the key is the dimension and the value is the collection of node signer’s

identifiers (if TSi) or subjectDN (if SSi) with that dimension.

The Dimension-based pruning lies in that the particular dimension of a SSi signature

can be used to filter the candidate nodes by selecting only those which dimension

coincides. For instance, the resultant candidate nodes for signatures S1, S3 and S4

(dimension 1) are {n0, n1, n2}, while for signature S2 (dimension 2) is only {n3}.
This pruning can be applied either before or after the Distribution-based pruning.

As such, both complement each other. In our case, we have designed the algorithm to

apply the Dimension-based pruning before the Distribution one. As an example, initial

candidate nodes for signature S1 are {n0, n1, n2, n3, n3}. After applying the Dimension-

based pruning, the resultant candidate nodes are reduced to {n0, n1, n2}. Finally, and

after applying the Distribution-based pruning, the final candidate node is {n1}.

Signer-based pruning

The first time a subjectDN is used as a search parameter, its corresponding signature

will be matched with one or more nodes of TSi in a certain level. As a result, the sub-

jectDN will be associated to one or more signer identifiers. There are two possibilities

providing that a deadlock is not found:

Non-definite signer assignment. If several matches have been made, the subjectDN

cannot be assigned to a definite signer identifier. However, the algorithm can still

use this list of assigned signer identifiers to filter candidate nodes in future steps.

Definite signer assignment. If there is only one match, then a definite signer iden-

tifier assignment is done. From that moment onwards, the subjectDN is linked

134

8.2 Using the Policy

to a unique signer identifier. This association is used by the algorithm to discard

candidate nodes in future steps.

As an example of a non-definite assignment, suppose that a signature with sub-

jectDN equals to CN = Researcher, OU = Computer Science Department, O = Uni-

versity Carlos III of Madrid is matched with two nodes in level 2 of TSi, the first node

with signer’s id = 1 and the second one with signer’s id = 2. The pruning here lies in

that future searches of signatures with the same subjectDN can only be matched with

nodes with signer identifiers equal to 1 or 2.

On the other hand, suppose that a signature with a different subjectDN is matched,

after having processed the candidate nodes, with just one node with signer’s id = 3. In

this case a definite signer assignment is done. Therefore, future processing of signatures

with that subjectDN can only be matched with nodes with id = 3. Moreover, future

processing of signatures with different subjectDN cannot be matched with nodes with

id = 3.

Once a signature has been firstly matched with certain nodes at a specific level

of TSi, the algorithm knows that the signer identifier to which that subjectDN will be

finally assigned is one of those identifiers, and no other. Otherwise, the matching would

imply a contradiction.

A signer-based pruning can also be applied while backtracking. For instance, con-

sider the example shown in Figure 8.4:

Figure 8.4: Identifier-based pruning example.

In Figure 8.4, the signature with subjectDN SDN0 is matched with nodes with

signer identifiers id = 1 and id = 2. While processing its countersignature, the signer

identifier 1 is definitely assigned to a different subject distinguished name, in this case

the subjectDN SDN1. As a result, while backtracking, the matching between the node

with signer identifier 1 and the signature SDN0 is undone. Moreover, derived from this

135

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

unmatching, and as only one matched node remains, a second definite signer assignment

is done between SDN0 and signer identifier 2.

It should be noted that a deadlock situation would have occurred if signer identifier 2

had been previously and definitely assigned to a second countersignature with different

subjectDN. Due to the signer-based pruning, the signature in the example would have

ended without matched nodes, and the validation would have failed.

In order to be able to manage this pruning method, the algorithm must maintain

an updated list of assigned signer identifiers (both definite and non-definite) that has

to be looked up in each step.

Path-based pruning

As previously mentioned, the algorithm processes each signature focusing on its corre-

sponding TSi search level. Once a signature has been matched with certain nodes, the

countersignatures are processed in the next deeper level, but using as candidate nodes

those that are children of nodes matching the parent signature, as explained in Section

8.2.2.1 above. This pruning method consists of the following: Once the leaf signatures

are reached, the algorithm backtracks, providing a list of the parent nodes that resulted

in a matching. Parent nodes not included in the list are discarded as matched nodes

for the parent signature. As a result, the space of possibilities, that is, actual nodes

which requirements are fulfilled by that signature, is reduced and refined.

For example, let T be a TSi of depth n, and S be a SSi of depth n as well. Let sn−1

be a signature of S in level n− 1, and sn be its countersignature in level n. If sn−1 is

matched with nodes node1n−1, node2n−1 and node3n−1 of T , then the algorithm uses

nodes children of node1n−1, node2n−1 and node3n−1 as candidate nodes for countersig-

nature sn. However, suppose that only a candidate node child of node2n−1 produces a

matching with countersignature sn. As a result, when the algorithm backtracks, nodes

node1n−1 and node3n−1 are discarded as matched nodes for sn−1. In this case we say

that a path-based pruning has been done.

A path-based pruning can result in a definite signer identifier assignment if, after

having applied the path-based pruning, only one matched node remains.

Figure 8.5 illustrates an example where signer-based and path-based prunings are

applied. Signer identifiers, acceptable signature policies and allowed commitment types

of the TSi nodes are shown. The subject distinguished name, signature policy used and

commitment type made of each SSi signature are shown as well.

Though it would seem at first glance that the SSi is compliant with the TSi, a

deadlock occurs during the validation. In the first step, signature SDN0 is matched

with nodes id1 and id2 in first level, as the signature policy used and the commitment

type made are among those permitted by both TSi nodes. When processing the first

136

8.2 Using the Policy

countersignature (SDN1), the algorithm evaluates the four child nodes in level 2 of TSi

as candidate nodes. This countersignature is only matched with the first candidate node

(id1). Then, a definite signer identifier assignment is done. As it is a leaf signature, the

algorithm backtracks. At this point, the algorithm detects that only the path of the

node id1 in first level resulted in a matching. As a consequence, node id2 in first level

is discarded as a matched node for signature SDN0. Besides, the algorithm detects that

the signer identifier id1 has been definitely assigned to a different subjectDN (SDN1).

Therefore, the matched node id1 is discarded as well, and a deadlock occurs.

As can be seen, both pruning methods feed each other, improving the overall per-

formance and accuracy of the algorithm.

Figure 8.5: Deadlock example.

8.2.2.3 Refinement stage

Due to the followed DFS strategy, SSi is processed in a top-down (bottom-up when

backtracking) and left-right manner. As a result, prunings and signer identifier as-

signments produced during the tree evaluation have no effect on the already processed

signatures. For that reason, and providing that a deadlock has not occurred during the

search, a refinement stage has to be applied before concluding the validation algorithm.

At this stage, the information generated during the search is analyzed. The informa-

tion mainly covers the matches between signatures and nodes, definite and non-definite

signer assignments, and timing and sequence dependences, which have not been evalu-

ated so far.

The aim of this stage is threefold, consisting of three phases:

• Detect possible deadlocks not detected yet. A signer identifier can be definitely

assigned to a subjectDN, but previously processed signatures with different sub-

jectDN still maintain the same assignment. On the other hand, signatures may

be matched with nodes which parent nodes do not derive in a matching for their

137

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

right-hand side siblings (path-based pruning), but their matchings are not up-

dated during the search. For these reasons, during this stage both pruning meth-

ods are iteratively applied until no change is produced, that is, a stable version

of the solution is obtained or a deadlock is found. This process is called the

refinement phase one.

• Analyze if every node of TSi is matched with at least one signature of SSi (SSi

satisfies this TSi). This analysis is carried out in the refinement phase two.

• Finally, in the refinement phase three, the timing and sequence dependences

among the signatures are evaluated. It is not possible to analyze these constraints

until each signature has been matched with nodes. Therefore, this analysis must

be done at this stage. Ideally, at this point each signature is matched with just

one node, and the evaluation of the dependences is straightforward. However,

sometimes there may be multiple matches for a signature. In these cases, each

combination must be considered for the timing and sequence analysis until either

a solution is found or every combination has been tested without producing a

solution. In this case, the validation fails. It is important to remark that an ext-

SP wrongly defined can provoke a deadlock (as traditionally defined in process

scheduling) respecting the timing and sequence dependences. For instance, if a

signature s1 must be generated after the signature s2, but s2 must be generated

after s1 (impossible condition), then a deadlock occurs. The ext-SP issuer is

responsible for defining a correct ext-SP.

As the very last step, and once a solution is found, each signature must be evaluated

according to the requirements of the referenced signature policy. Only when this final

validation step is successfully completed, the set of signatures can be said to comply

with the extended signature policy. It should be mentioned that this verification could

be performed before starting the validation algorithm as well.

8.2.3 Integration in AdES formats

Advanced Electronic Signature Formats (AdES) like CAdES [74, 187] and XAdES

[59, 75] have adopted the inclusion of the signature policy reference as a signed at-

tribute in their EPES version. By signing over the signature policy identifier, the

signer explicitly indicates that he has applied the signature policy in creating the sig-

nature. The verifier is also able to retrieve the referenced signature policy content and

thus validate the signature accordingly. In order to unambiguously identify the refer-

enced signature policy that is to be used to verify the signature, the signed attribute

138

8.2 Using the Policy

includes an identifier unique in the domain of the signature policy issuer and a hash of

the signature policy document.

In order to support the usage of extended signature policies in the same way, a new

signed attribute has to be defined. For CAdES signatures, we propose the following id-

aa-ets-extSigPolicyId object identifier (OID) to identify the new extended signature

policy identifier attribute1:

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16)

id-aa(2) 49 }

The attribute value has SignaturePolicyIdentifier ASN.1 type, as defined in [74,

187]:

ExtSignaturePolicyIdentifier ::= SignaturePolicyIdentifier

SignaturePolicyIdentifier ::= CHOICE {

SignaturePolicyId SignaturePolicyId,

SignaturePolicyImplied SignaturePolicyImplied

}

On the other hand, and for XAdES signatures, a next signed property, child of

xades:SignedSignatureProperties element and of type SignaturePolicyIdentifierType XML

type (as defined in [75]), is proposed:

<xsd:element name="ExtSignaturePolicyIdentifier"

type="xades:SignaturePolicyIdentifierType"/>

<xsd:complexType name="SignaturePolicyIdentifierType">

<xsd:choice>

<xsd:element name="SignaturePolicyId" type="SignaturePolicyIdType"/>

<xsd:element name="SignaturePolicyImplied"/>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="SignaturePolicyIdType">

<xsd:sequence>

<xsd:element name="SigPolicyId" type="ObjectIdentifierType"/>

<xsd:element ref="ds:Transforms" minOccurs="0"/>

<xsd:element name="SigPolicyHash" type="DigestAlgAndValueType"/>

<xsd:element name="SigPolicyQualifiers"

type="SigPolicyQualifiersListType" minOccurs="0"/>

1At the time of writing the thesis, OID 1.2.840.113549.1.9.16.2.49 was not assigned

139

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SigPolicyQualifiersListType">

<xsd:sequence>

<xsd:element name="SigPolicyQualifier" type="AnyType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

The signature would then include as signed attributes the signature policy and

extended signature policy references along with the commitment type made by the

signer.

8.2.4 Certificate extension

From the division principle perspective, the extended signature policy basically defines

the signatures that are part of certain non-repudiation evidence. By incorporating

the extended signature policy identifier signed attribute (see Section 8.2.3), it is being

indicated that the corresponding signature is part of certain evidence, and that it cannot

be enforced nor the signer can be held liable for any commitment made with such

signature until all signatures are present. On the other hand, Section 7.2.5 of Chapter

7 presented two proposals to bind each environment with the signature creation data

(SCD) that must be used within its boundaries. The joint application of the signed

attribute and the environment-SCD binding assures the enforcement of the division

principle. However, a problematic scenario may arise.

Let’s assume that an attacker has compromised one of the environments needed

to produce non-repudiation evidence. The environment-SCD binding assures that the

attacker cannot gain access to every SCD required for the evidence composition unless

all environments are compromised. But the attacker is still capable of generating digital

signatures on behalf of the user by using the SCD bound to that environment. Such

signatures could be used in certain non-repudiation service or have legal effectiveness,

provided that the extended signature policy identifier signed attribute is not included,

what is clearly reasonable once the attacker controls the environment.

To avoid an attacker to obtain a benefit from fraudulent signatures, the usage

of every public key should be restricted to just the extended signature policy scope.

Chapter 2 introduced the Public Key Infrastructure (PKI) and the digital certificate.

An important field of a certificate, called keyUsage, permits to delimit the purposes

or usages of the key embedded in the certificate. However, key usages defined in PKI

140

8.2 Using the Policy

are related to the cryptographic operations that can be carried out with such keys, like

data origin authentication or key agreement.

In order to incorporate customized key usages, the standard defines the extended

key usage extension field (extKeyUsage), by which one or more purposes for which

the certified public key may be used can be indicated, in addition to or in place of the

basic purposes indicated in the key usage extension. Using this field, we define the

next extended key usage by which the purpose of the key is restricted to verify digital

signatures generated under the scope of an extended signature policy1:

id-kp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6)

internet(1) security(5) mechanisms(5) pkix(7) keyPurpose(3) }

id-kp-nonRepudiationExtSP OBJECT IDENTIFIER ::= { id-kp 18 }

-- Verify digital signatures under the scope of an extended electronic

-- signature policy

As defined by the standard [57], if this extension is present, then the certificate must

only be used for one of the purposes indicated. Also, if multiple purposes are indicated,

then the application need not recognize all purposes indicated as long as the intended

purpose is present. However, and as stated by the standard, if a certificate contains

both a key usage extension and an extended key usage extension, then both extensions

must be processed independently and the certificate must only be used for a purpose

consistent with both extensions. Consequently, we recommend that certificates issued

to fulfill this thesis proposal must incorporate nonRepudiation key usage (renamed to

contentCommitment in last version of the standard [57]) and nonRepudiationExtSP

extended key usage.

Another alternative we propose herein consists of including a new certificate ex-

tension for X.509 v3, named extended signature policy extension. According to

[57], certificate extensions provide methods for associating additional attributes with

users or public keys. Our new extension would permit any PKI to limit the scope of

the certificates issued, allowing only their usage in services orchestrated by extended

signatures policies. Therefore, if the electronic signature being verified with the public

key embedded in such certificate does not include a reference to an extended signature

policy, then the signature must not be deemed valid.

This other proposal complies with current standard as it is indicated that the X.509

v3 certificate format allows communities to define private extensions to carry informa-

tion unique to those communities. Each extension includes an object identifier (OID)

1At the time of writing the thesis, OID 1.3.6.1.5.5.7.3.18 was not assigned

141

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

and an ASN.1 structure. We propose the following OID for the new extended signature

policy extension1:

id-ce OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 29 }

id-ce-extSignaturePolicy OBJECT IDENTIFIER ::= { id-ce 65 }

The attribute value has SignaturePolicyIdentifier ASN.1 type, as defined in [74, 187]

(see also Section 8.2.3):

ExtendedSignaturePolicy ::= SignaturePolicyIdentifier

Both solutions given here are based on refining the semantic and usage of the

certificate by means of certificate extensions. Any of them, the extended key usage

extension or the extended signature policy extension, may be used indistinctly or in

conjunction.

Extensions (e.g. extended key usage, certificate extensions) can be designated as

either critical or non-critical. The relying party or anyone using the certificate is re-

quired to reject it if a critical extension of the certificate is not recognized or cannot

be processed. On the other hand, a non-critical extension could be ignored if it is not

recognized, but must be processed otherwise. Respecting the extended key usage and

extended signature policy extensions, it is up to the particular PKI issuing the certifi-

cate its definition as critical or not critical. However, we recommend to designate them

as critical in order to counteract attacks explained above.

As users already own one or several key pairs and digital certificates (e.g. soft-

ware, in smart cards, USB tokens etc.), we also saw the need to design a solution that

facilitated them the participation in non-repudiation services according to our thesis

proposal but without the need to obtain a new certificate complying with the extension-

based solutions proposed herein. In [93], we propose a method to re-issue a subscriber’s

digital certificate, allowing the incorporation of new key usages or fields, like, for in-

stance, the extended key usage extension or the extended signature policy extension.

This method permits to maintain the cryptographic keys while the certificate content is

extended or modified according to the particular signature application. Consequently,

this proposal may be applied to obtain a new certificate (wrapping the same public

key) with extended key usage extension or the extended signature policy extension.

This proposal has the drawback that as long as the source certificate that wraps

the same public key is valid, an attacker that compromised the private key could still

be capable of producing signatures out of the context of an extended signature policy.

1At the time of writing the thesis, OID 2.5.29.65 was not assigned

142

8.3 Chapter Summary

8.3 Chapter Summary

Signature policies are an important step forward since they customize the requirements

an electronic signature must fulfill in a particular transactional context. However,

current signature policy definition is focused on the generation and validation rules for

a single signature. The management of multiple signatures where relationships exist

in a unique transaction is not possible. This scenario limits the usage of signature

policies in business scenarios where the presence of more than one signature is a must,

like e-commerce, contract signing protocols, e-Government applications, certified email

systems or the division principle proposed in Chapter 7.

In this Chapter we have proposed a complete framework to cover this need. In

particular, the definition of an extended signature policy along with the generation

and validation procedures to be followed by signers and verifiers have been presented.

We have designed the solution taking into account current standards. As a result,

the extended signature policy framework described herein can be easily integrated into

existent signature applications and processes.

The policy definition is given both in ASN.1 and XML, allowing its integration in

processes where either ASN.1 or XML signatures have to be generated. Moreover, the

framework has been designed to be independent from the particularities of the higher

layer protocol or application that uses it. As a result, our design allows a flexible

and protocol independent definition of extended signature policies, supporting complex

business models.

143

8. EXTENDED ELECTRONIC SIGNATURE POLICIES

144

Chapter 9

An Optimistic Fair Exchange

Protocol based on Signature

Policies

In this Chapter, we propose a novel fair exchange protocol oriented to Internet trans-

actions where two parties exchange information in a fair and secure manner. The

protocol, named OFEPSP+ (improved Optimistic Fair Exchange Protocol based on

Signature Policies), is based on the division paradigm and the extended electronic sig-

nature policies proposals given in Chapters 7 and 8, respectively.

The Chapter is organized as follows. The protocol scheme is detailed in Section

9.1. Section 9.2 contains some recommendations and guidelines for a practical imple-

mentation of the protocol. Finally, the Chapter is concluded in Section 9.3. The basic

notation and definitions used along the Chapter are given in the introduction of the

thesis (see Chapter 1).

9.1 The Protocol

The objective of the protocol is the fair exchange of origin’s message and non repudi-

ation evidence of both origin and receiver. The origin sends a signed message to the

receiver while the receiver sends back a proof of receipt of the message. Therefore,

both parties are making a commitment in the transaction: the origin cannot repudiate

having created the content of the message and having sent it, while the receiver can-

not repudiate having received the message. As a fair exchange protocol, the protocol

ensures that no party gains an unfair advantage over the other during the protocol exe-

cution. Therefore, either both parties obtain the expected information or none of them

obtains any useful information from the other. As an optimistic protocol, a Trusted

145

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

Third Party (TTP) is included in the design but participating only when a party’s

misbehavior or protocol error occurs.

Many fair exchange protocols found in literature are designed using symmetric

encryption, assuring the undisclosure of the message sent by the origin until the receiver

has made a commitment in the transaction [142]. In our case, the protocol, named

OFEPSP+, is based on signature policies [71], extended signature policies (see Chapter

8) and the division paradigm (see Chapter 7). The rules that manage the protocol

execution and the dispute resolution clauses are specified in the policies. Therefore,

the exchange between origin and receiver (and TTP when necessary) totally depends

on the policies content.

During the protocol run, several digital signatures are generated by both the origin

and the receiver, until valid evidence is produced. Therefore, valid evidence will consist

of several digital signatures. According to the extended signature policy rules, each

digital signature is not binding on its own, and only when every digital signature,

and thus the valid evidence, have been correctly generated, the origin and the receiver

are bound to their commitments. The commitment of each party is represented by

the group of signatures it has generated. Therefore, valid evidence inherently implies

the existence of two commitments, one from each side. As commented above, it is

assumed that non-repudiation of origin and non-repudiation of receipt services are

being delivered in OFEPSP+. However, it should be noted that different commitments

could be established by using the appropriate signature policies, and without having

to modify the protocol design.

The signature policy and the extended signature policy references are included as

a signed property in each signature performed by the parties, and that will be part of

valid evidence. It allows any verifier to ascertain if evidence matches the requirements

imposed in the policies. Therefore, signature creation and verification processes can be

completely carried out in an automatic and transparent way in accordance with the

signature policies rules.

For simplicity and practical purposes, the division principle is only applied to the

origin, enhancing the reliability of partial evidence generated by the origin, and that

consists of every digital signature generated by him. Therefore, it is being assumed

that the origin corresponds to an end user, while the receiver could be represented by

an e-commerce Web site. We limit the number of environments to two. As a result, the

origin will use two environments, generically named E1 and E2, to compose the partial

evidence of origin, and verify the evidence being generated during the transaction.

Both environments must comply with the models provided in Section 6.2. In addition,

the reliability of origin’s partial evidence can be easily increased as OFEPSP+ design

permits to add new environments in a straightforward manner. It is important to

146

9.1 The Protocol

remark that the extended signature policy that manages the transaction permits not

only to implement the division principle on the origin’s side but also to assure the

fairness of the protocol.

OFEPSP+ consists of one main protocol, explained in Section 9.1.3, and two sub-

protocols, named recovery subprotocol and abort subprotocol, explained in Sections

9.1.4 and 9.1.5 respectively.

The binding between the signature creation data and the corresponding environment

must comply with either a well established procedure or the environment attestation

technique, as explained in Section 7.2.5. In this Chapter, we follow the environment

attestation technique for environments E1 and E2. Moreover, the transaction data

must not be formatted following complex or rich formats, as explained in Section 7.2.6.

Besides, a template is used by the parties in order to fix the information to be sent by

the origin. This template is referenced by the template identifier tpl id. The template

must be defined by the receiver according to the transaction needs, and the message

sent by the origin must be further processed by the receiver taking into account the

template information.

Finally, each message exchanged includes a protocol identifier ` that permits to

uniquely identify the protocol run it belongs to.

9.1.1 Entities of the protocol

Before formally detailing the protocol, the function of each participant entity is briefly

explained:

Origin (O). It is the entity that initiates the transaction, and that wants to send a

message to the receiver with the corresponding non-repudiation evidence of origin.

The origin expects a non-repudiation evidence of receipt from the receiver. This

entity owns two different environments, E1 and E2, for evidence generation and

evidence verification.

Receiver (R) It is the entity that receives a message from a origin and the correspond-

ing non-repudiation evidence of origin. The receiver shall send a non-repudiation

evidence of receipt to the origin. This entity owns a single environment for evi-

dence generation and evidence verification.

TTP-SP It is a Trusted Third Party that implements the roles of the Signature Policy

Issuer and the Signature Policy Publication Authority, according to [71]. Nor-

mally, these roles are held by different entities, but other configurations are pos-

sible if desired. The TTP-SP holds both roles in the protocol in order to make

147

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

the explanation clearer. The TTP-SP has certain signature policies - both simple

and extended - configured and available both to the origin and receiver.

TTP It is a Trusted Third Party which participates in the recovery and abort subpro-

tocols. Thus, it acts in optimistic mode, that is, only when an abnormal situation

occurs in the main protocol.

9.1.2 Evidence exchanged

Partial and valid evidence produced and verified during the protocol are described next,

following the notation given in Chapter 1:

PNRO1 = SSCDE1

(
SE1

O (m, `, tpl id|SP/extSP)
)

Attested digital signature acting as first partial non-repudiation evidence of origin

of message m, using the environment E1.

PNRR1 = SR (m, `, tpl id|SP/extSP)

Digital signature acting as first partial non-repudiation evidence of receipt of

message m, being a sequential signature respecting PNRO1.

PNRO2 = SSCDE2

(
SE2

O (PNRR1|SP/extSP)
)

Attested digital signature acting as second partial non-repudiation evidence of

origin of message m, that countersigns PNRR1 using environment E2.

PNRR2 = SR (PNRO2|SP/extSP)

Digital signature acting as second partial non-repudiation evidence of receipt of

message m, that countersigns PNRO2.

NRE = SSCDE1

(
SE1

O (PNRR2|SP/extSP)
)

Attested digital signature that composes the valid non-repudiation evidence that

ties down both the origin respecting the message m sending and content creation

(non-repudiation of origin) and the receiver respecting the message m reception

(non-repudiation of receipt). It is generated by the origin, countersigning PNRR2

and using environment E1.

NRETTP = STTP (PNRR2|SP/extSP)

Digital signature that composes the valid non-repudiation evidence that ties down

both the origin respecting the message m sending and content creation (non-

repudiation of origin) and the receiver respecting the message m reception (non-

repudiation of receipt). It is generated by the TTP when the recovery protocol

has been executed, countersigning PNRR2.

148

9.1 The Protocol

As can be seen, every signature is generated (and must be verified) following the

procedures specified in signature policies SP and extSP. In addition, PNRO1, PNRO2

and NRE must be attested by the environment where such signatures are generated.

Finally, PNRO1 and PNRR1 signatures are generated over the message m, the pro-

tocol identifier ` and the template identifier tpl id.

9.1.3 Main protocol

In the main protocol, the origin initiates the transaction by sending the signed mes-

sage to the receiver by means of E1. Afterwards, the origin uses both E1 and E2 to

complete the valid evidence, and finalize the transaction. The receiver will exchange

several intermediate evidences with both E1 and E2, until the final valid evidence is

generated. Next, the main protocol is formalized using the notation given in Chapter 1:

(1) OE1 ← R : tpl [tpl id] , SR (tpl [tpl id])

First, the origin (O) requests the template identified by tpl id to the receiver (R) by

means of E1 (1).

(2) OE1 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

In step (2) the origin retrieves the signature policy SP and the extended signature pol-

icy extSP necessary to communicate with the receiver and generate protocol evidence.

Once the origin has obtained the template and the policies, he can produce the message

and PNRO1 taking into account this information.

(3) OE1 → R : m, `, tpl id, PNRO1

In step (3), the origin sends the message m, a unique protocol identifier `, the template

identifier tpl id and the PNRO1.

(4) R← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(5) R→ OE2 : m, `, tpl id, PNRO1, PNRR1

The receiver retrieves the signature policy and the extended signature policy (4), if not

obtained yet, and validates the received PNRO1. Afterwards, the receiver generates

and sends the PNRR1 to the origin’s environment E2 (5). The receiver must also send

all the information received from the origin in step (3) in order to allow him to vali-

date the initiated transaction using the environment E2. Step (4) can be avoided for

efficiency purposes if the receiver accesses the TTP-SP once and afterwards manages a

local copy of the signature policies, provided that they are within their validity periods.

149

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

(6) OE2 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(7) OE2 → R : PNRO2

The origin must generate the PNRO2 (7) only if the information received in step (5)

corresponds to a desired transaction and PNRO1 and PNRR1 are correctly verified.

For that purpose, the origin must download the signature policy SP and the extended

signature policy extSP to the E2 environment (6).

(8) R→ OE1 : PNRR2

Once the origin has confirmed the transaction by means of the PNRO2, the receiver

sends the PNRR2 to the origin’s environment E1 (8).

(9) OE1 → R : NRE

In the last step (9) the origin completes the transaction by sending the NRE to the

receiver. It should be mentioned that, before generating NRE, the origin must vali-

date PNRR2. To validate PNRR2, the origin must use PNRO2, which is obtained

from the signature embedded in PNRR2. To validate PNRO2, the origin must use

PNRR1, which is obtained from the signature embedded in PNRO2. Finally, to val-

idate PNRR1, the origin must use m, ` and tpl id, know from step (1) (see Section

9.1.2 for detailed information about partial evidence composition).

Therefore, valid evidence NRE is generated using two environments of the origin

and a third environment of the receiver. Evidence verification is also supported by the

two environments of the origin1:

• Partial evidence PNRO1 is generated by the origin in E1 at step (2) but also

verified by the origin itself in E2 at step (6).

• Partial evidence PNRR1 is generated by the receiver in step (5) and verified by

the origin both in E2 in step (6) and in E1 at step (9).

• Partial evidence PNRO2 is generated by the origin in E2 at step (7) but also

verified by the origin itself in E1 at step (9).

• Partial evidence PNRR2 is generated by the receiver at step (8) and verified by

the origin only in E1 at step (9), as it comprises the last step of the protocol.

It is important to remark that the signatures that correspond to the evidences gen-

erated in the protocol (PNRO1, PNRR1, PNRO2, PNRR2 and NRE or NRETTP)

1Please note that the protocol is designed to enhance the reliability of evidence produced and

verified by the origin, not the receiver.

150

9.1 The Protocol

must be generated according to electronic signature standards (see Section 9.2). Thereby,

references to the signature policies used in the protocol (both simple and the extended)

are included as signed properties in the specific electronic signature format chosen for

the transaction (i.e. XAdES, CAdES). This permits any party to know and retrieve the

signature policies and avoids an attacker to modify the referenced signature policies.

Although not shown above, evidences PNRO1, PNRR1, PNRO2, PNRR2 and NRE

must be time-stamped. The time-stamp is an assertion of proof given by the Time-

Stamping Authority (TSA) that the datum existed before the specified time. The

time-stamping procedure must be carried out according to known standards [5], and

implies the participation of a TSA.

9.1.4 Recovery subprotocol

The recovery subprotocol allows the receiver to obtain evidence NRE in case of a pro-

tocol interruption or origin’s misbehavior, and must be executed if the receiver does

not receive the NRE within a specific time interval. OFEPSP+ recovery subprotocol

consists of the next steps:

(1) R→ TTP : H (m, `, tpl id) , `, PNRO1, PNRR1, PNRO2, PNRR2

if (protocol aborted) then

(2a) TTP → R : STTP (SO (abort, `|SP/extSP) |SP/extSP)

else

(2b) TTP ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(3b) TTP → R,OE1 , OE2 : NRETTP

In (1) the receiver sends the produced partial evidence PNRO1, PNRR1, PNRO2

and PNRR2 to the TTP. Also, and in order to protect the privacy of the parties, the

information signed in PNRO1 and PNRR1 - the message, the protocol identifier and

the template identifier - is not sent in plain text but the hash of their concatenated

values. Yet the TTP is still able to verify PNRO1 and PNRR1 by directly using the

hash, provided that a digital signature scheme based on public key cryptography is

used (e.g. RSA, DSA, ECDSA). The TTP must decrypt the attested digital signature

of PNRO1 and PNRR1 using the corresponding public keys, obtaining the hash of

the signed information, which must correspond to the value of H (m, `, tpl id). ` is

sent in (1) to allow the TTP to retrieve and update the information associated to the

transaction.

If the protocol has already been aborted, the TTP merely forwards the abort evi-

dence to the receiver (2a). On the other hand, the TTP generates the NRETTP taking

151

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

into account the referenced signature policies - (2b) and (3b) -, but only in the first re-

quest. Evidence must be stored in a local database along with the received information.

Subsequently, the TTP will reuse it, improving the efficiency.

9.1.5 Abort subprotocol

The abort subprotocol allows the origin to abort the protocol execution if a malicious

behavior of the receiver is suspected, an error during the protocol run has occurred or,

more importantly, a fraudulent transaction is detected during evidence verification at

any environment. The abort subprotocol can be executed by the origin at any step of

the protocol and from any environment. OFEPSP+ abort subprotocol consists of next

steps:

(1) OE1|E2
→ TTP : abort, `, SO (abort, `|SP/extSP)

if (recovery protocol executed) then

(2a) TTP → OE1|E2
: NRETTP

else

(2b) TTP ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(3b) TTP → OE1|E2
: STTP (SO (abort, `|SP/extSP) |SP/extSP)

The abort subprotocol is designed to permit the origin to prevent an attacker or

malicious receiver from producing valid evidence NRE or NRETTP . In this sense,

an abort subprotocol execution will not lead to a NRETTP receipt unless the origin

produced PNRO2 at environment E2 (see step (7) of main protocol). Consequently, the

transaction information must have been verified by the origin using both environments.

For efficiency purposes, STTP (SO (abort, `|SP/extSP) |SP/extSP) is only gener-

ated in the first time (2b) and (3b), being reused in subsequent executions of the abort

subprotocol. On the other hand, if the protocol has been recovered (2a), the TTP just

retrieves the NRETTP from its data base, forwarding it to the origin.

9.1.6 Dispute resolution

An important issue in fair exchange protocols is the dispute resolution, which has to

be carried out in two cases:

• If the receiver claims to have received message m while the origin denies having

sent it to the receiver.

• If the origin claims to have sent message m while the receiver denies having

received it from the origin.

152

9.2 Implementation Guidelines

The dispute resolution objective is to settle who is lying and who is saying the truth.

For that purpose, evidence collected during the protocol execution must be evaluated

by a fair and neutral third party, for instance, a judge. This judge is normally a

physical person who, by using the appropriate software, can determine the validity of

the evidence.

In this protocol, and in both cases above, the evidence that must be presented to

the judge is the NRE, NRETTP or the abort token countersigned by the TTP. Any

presented evidence must have been generated according to protocol requirements and

the signature policies rules. The protocol design assures that either both parties obtain

the NRE (or NRETTP) or none of them can gain any advantage over the other. Valid

evidence can have been generated either by the origin and receiver (NRE) or by both

of them and the TTP (NRETTP).

Therefore, the judge must verify the correctness of evidence, in the sense of digital

certificates used by the parties, the validity of the digital signatures and the rest of the

information that should have been included in the evidence (see Section 9.2 for further

information), always according to the signature policies statements. The existence and

correctness of evidence determines whether the claims of origin or receiver are right or

wrong.

Furthermore, OFEPSP+ design allows detecting origin’s misbehavior in case the

origin aborted the protocol after having received the PNRR2 from the receiver. After

receiving PNRR2, the origin is capable of producing valid evidence NRE. Aborting the

protocol would imply that the receiver was not able to compose a valid evidence, while

the origin did. However, and during the dispute resolution, the receiver would present

the abort token, signed by the origin and countersigned by the TTP. Consequently, it

is easy to demonstrate that the origin misbehaved.

9.2 Implementation Guidelines

This Section contains guidelines for implementing OFEPSP+ and recommendations

about signature formats to use, methods for obtaining the validation information and

a signature policy architecture proposal that can be integrated in the protocol design.

Also, requirements for the communication channels are provided. Appendix F contains

an example of an extended signature policy for OFEPSP+.

The architecture proposed is in accordance with [71], but it is applicable not only to

the management of simple signature policies but also to the extended signature policy

defined in Chapter 8.

153

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

9.2.1 Architecture

Signature policies can be applied in private and public sectors, and in open and closed

environments. In any case, the policy is defined by the entity that needs those require-

ments to be enforced. This entity specifies the technical and procedural requirements

for electronic signature creation and validation, in order to meet a particular business

need. The entity is called the Signature Policy Issuer. The issuer can be a legal

person (e.g. an organization) or a natural person (acting under a professional func-

tion) that establishes the rules that must be followed by his community of users when

generating/validating electronic signatures.

A signature policy must be made available to the transacting parties while it is still

valid. The Signature Policy Publication Authority is responsible for that, and the

publication task must be carried out assuring the reliability of both the process itself

and the information published.

Signature Policy Issuers may disappear once they have issued their policies and

Policy Publication Authorities are not obliged to maintain the signature policies after

they expire. But users may still want to validate electronic signatures created under

a signature policy a long time after its expiration date. The task of archiving the

signature policies in a publicly accessible repository is done by the Signature Policy

Archiving Authority.

Next Figure 9.1 shows an architecture where above roles are played by three different

independent entities. The issuer entity is an external organization to which the receiver

is adhered.

Each entity carries out a specific task in the architecture. One of the key enti-

ties is the Signature Policy Publication Authority. This entity allows both origin and

receiver access a repository for retrieving the signature policy to be used during the

protocol execution. The role of the Signature Policy Issuer is not needed during the

protocol execution, but obviously it is necessary before the protocol can take place.

The publication task can be carried out by the Issuer as well.

As it can be seen in Figure 9.1, the receiver communicates with the Issuer for se-

lecting, among all available policies, the signature policy to be used during the protocol

execution. Issuers are normally linked to receivers, and sometimes the receiver gener-

ates its own policy. In a normal scenario it is the receiver the one who imposes the

requirements for buying a resource in his (e-)commerce. Obviously, the origin can de-

cide whether to accept or not these requirements, by reviewing the signature policy

rules and specific receiver’s web site conditions.

After that, the receiver has to make the signature policy available to origins. For

that purpose the signature policy is uploaded to the Publication Authority repository.

154

9.2 Implementation Guidelines

Figure 9.1: Architecture of a signature policy scenario.

Once origins and receivers can obtain the signature policy, the fair exchange protocol

can be launched.

It is important to remark that while the signature policy is still valid, the parties can

retrieve the signature policy from the repository located at the Publication Authority

in order to create and validate the signatures. Once the signature policy has expired,

the Publication Authority should forward it to the Archiving Authority, allowing the

signatures to be validated beyond the end of the validity of the signature policy (e.g. a

judge has to resolve a dispute). However, no more signatures should be created under

the rules of an expired signature policy.

9.2.2 Requirements for the communication channels

The architecture proposed in Figure 9.1 implies several message transmissions among

involved parties. This Section sets out the requirements for the communication chan-

nels.

155

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

Communication channels are usually categorized as follows [214]:

Unreliable channel. A channel that may not deliver messages randomly.

Resilient channel. A channel that reliably delivers any message to the other end,

after some finite but unknown amount of time.

Reliable channel. A channel that delivers any message to the other end after a fixed

and known delay.

Next, all communication channels in the architecture are analyzed using previous

classification and the minimum requirements of each communication channel are dis-

cussed1:

• Receiver ← Issuer

This channel is used by the receiver for downloading the signature policies files.

Because the receiver will make as many attempts as necessary for successfully

downloading the files, even an unreliable communication channel could be used.

• Origin← Publication Authority

This channel may be needed only once in case the simple signature policy to use

is the same for the rest of signatures. In that case, the origin would access the

Publication Authority only once when performing the PNRO1, to obtain the

signature policies needed for the rest of the protocol. From that point onward,

the origin would re-use the downloaded policy for partial evidence validation and

generation. The extended signature policy must be the same along the whole

process, and as such it will only be needed to be downloaded once. As it is as-

sumed that the origin will try to download the signature policies until successfully

obtained, a reliable, resilient or unreliable communication channel could be used.

On the contrary, if several simple signature policies are used during the protocol,

the origin will have to access the Publication Authority each time a new policy

is referenced in a signature being validated, or a new policy is to be used for the

generation of certain signature. Once the protocol is started, delays at message

receptions may be taken into account by the parties. In order to avoid that a

long delay causes an abort or recovery of the protocol, it is recommended to use

a reliable communication between the origin and the Publication Authority. If

this requirement cannot be fulfilled, then a resilient channel could be used but

the parties are advised to be more tolerant respecting response times. It should

be noted that the origin could download every simple signature policy referenced

from the extended policy at first step, avoiding this situation.
1When referring to origin, it includes both E1 and E2 environments

156

9.2 Implementation Guidelines

• Receiver ← Publication Authority

In the same manner as above, it is recommended to use a reliable communication

between the receiver and the Publication Authority, in case the required signature

policies have not been locally stored after the signature policy selection (step 1 in

Figure 9.1), or the simple signature policy to use is not the same along the whole

protocol. If this requirement cannot be fulfilled, then a resilient channel could be

used but the parties are advised to be more tolerant respecting response times.

• Origin↔ Receiver

During the protocol execution, communication errors that could cause messages

losses might make the abort or recovery subprotocols be executed. Same justifi-

cation as previous point applies here.

• Publication Authority → Archiving Authority

A signature policy transference from the Publication Authority to the Archiving

Authority does not require a communication channel with a high level of relia-

bility. An unreliable communication channel suffices, provided that the entities

will retry the transmission until it successes. It should be mentioned that, if an

error occurs during the transmission, the Publication Authority must not delete

the file from its repository. Otherwise, no electronic signature generated under

this signature policy could be validated anymore.

• Judge← Publication Authority and Archiving Authority

Finally, this case can be argued to be exactly the same as in previous point, so it is

supposed that the judge will make as many attempts as necessary to successfully

download the signature policy.

Next table 9.1 summarizes minimum requirements for existing communication chan-

nels:

9.2.3 Electronic signature format

Section 3.2 mentioned that Advanced electronic signature (AdES) formats that include

the signature policy reference and a time reference are suffice to fulfill the require-

ments imposed by ISO model on non-repudiation for generic non-repudiation tokens

(GNRT) and non-repudiation tokens specific to the service being provided. However,

if the transaction context requires the long-term assurance of non repudiation of the

actions performed, as it may be the case in the proposed protocol, it is of utmost im-

portance to incorporate additional information to the electronic signature and fulfill

certain requirements during its generation.

157

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

Communication channel Minimum requirement

Receiver ← Issuer Unreliable

Origin← Publication Authority

single access Unreliable
accesses during the protocol Resilient

Reliable (recommended)

Receiver ← Publication Authority

single access Unreliable
accesses during the protocol Resilient

Reliable (recommended)

Origin↔ Receiver Resilient
Reliable (recommended)

Publication Authority → Archiving Authority Unreliable

Judge← Publication Authority / Archiving Authority Unreliable

Table 9.1: Minimum requirements for communication channels in the protocol architec-
ture.

The main aim is to provide electronic signatures with all necessary information that

allows them to be successfully verified in the future, even if a long time has elapsed since

their creation. The reason is that in certain scenarios, electronic transactions relate to

contractual operations. It is possible that the commitments made in the transaction

should still be valid long time after the transaction took place (e.g. dispute resolution).

As mentioned above, signature policies have been defined both in ASN.1 [73] and

XML [70]. This allows their use in CAdES and XAdES formats, respectively. In-

corporating a signature policy (or a reference to it) in an AdES upgrades it to an

AdES-EPES format (Explicit Policy-based Electronic Signature), a format from which

AdES-T, AdES-C, AdES-X or AdES-A can also be built. In particular, we suggest an

AdES-EPES format (either in XML or ASN.1) that contains the following validation

information:

• Timestamp over the digital signature value.

• Certification path.

• Certificates revocation status information.

Time stamping a digital signature provides evidence that the signature has been

created before the time of stamping, and requires the presence of a Time-stamping

Authority (TSA). Certification path implies capturing all the certificates from the cer-

tification path, starting with that from the signer and ending up with the self-signed

158

9.2 Implementation Guidelines

certificate from one trusted root. Thereby, the verifier can ascertain that the certifi-

cation path was valid according to naming or certificate policies constraints. Finally,

revocation status information of all certificates presented in the signature completes

it with the necessary information for assuring its validity in a future, although this

information could not be obtained anymore. Revocation information can be obtained

by accessing an Online Certificate Status Protocol (OCSP) service, if available, or by

retrieving the Certificate Revocation List (CRL) otherwise.

Validation information above provides the electronic signature with long term proof.

By combining time reference with certification path and revocation status information,

verifiers can be sure, at any time (even after certificate expiration or revocation), about

the validity of the signature and signer’s certificate at the moment of signature gen-

eration. Note that a Certification Authority normally deletes a certificate revocation

information entry from the CRL as soon as the certificate expires. Moreover, the

AdES-EPES allows the generation of electronic signatures according to a signature

policy, complying with the conditions imposed by the optimistic fair exchange protocol

proposed in this Chapter.

9.2.4 Addition of validation information

Previous information may be collected and added to the signature by the signer or veri-

fiers, depending on the context and particular technological limitations. For instance, if

the signer is an individual buyer with limited computer capability, then it is preferable

to move the validation information retrieval from the buyer to the seller side.

In case the transaction is performed in a B2B context, assuming that both sides

are able to access external systems and none of them have network bottlenecks, the

solution is not fixed either. The protocol proposed in this Chapter sets that each side

must obtain a time reference for the signatures they generate. Thereby, because the

time stamp is obtained before sending the electronic signature, a more accurate time

reference is applied by avoiding communication delays. However, it is also possible to

establish that each one must obtain the validation information of the other side, in

order to be sure that, for example, the revocation status information corresponds to

the validation time reference and therefore it is not being obtained long time after the

timestamping. Notice that a grace period should be taken into account for allowing

revocation requests being processed by the Certification Authorities before the verifier

collects the revocation information. If not, the verifier will not obtain reliable infor-

mation if a revocation request was issued by the signer just before the signature was

computed and time-stamped [74, 75].

The solution that fits better with the protocol design is a hybrid one. On the one

hand, each side obtains a time stamp over the digital signature it has just generated

159

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

and adds it to the AdES-EPES, building an AdES-T. On the other hand, the other

side must collect the remaining validation information after the AdES-T has been

validated. As an example, in step (5) of main protocol the receiver must verify the

PNRO1 with time stamp, and then, if successfully verified, collect the certification

chain and the revocation status information of all included certificates. Likewise, in

step (7) the origin must do the same with the time stamped PNRR1 and receiver’s

related certificates.

This solution improves the accuracy of the validation information while preserv-

ing the closest time reference of each signature. If the communication between origin

and receiver has to be as interactive as possible, then no grace period should be ap-

plied. Trade-off between accuracy and time-response must be made by the system

designer. The way the validation information (certification path and revocation status

information) is added to the AdES-T differs, and depends on specific implementation

conditions. There are mainly two possibilities: incorporating the validation information

itself (AdES-X) or incorporating a reference to it (AdES-C). The former solution allows

the AdES being completely independent but of greater size, while the latter minimizes

the size of the resulting signature but obliges to store the information in an accessible

repository. Due to the need of specific applications for storing referenced information

in an AdES-C solution, in a B2C context an AdES-X solution is probably a better

choice. In B2B both solutions could be applied.

9.2.5 Addition of new environments

OFEPSP+ design obliges the origin to use two different environment. The reason for

the restriction in the number of environments stems from practical issues. A configu-

ration of two environments can be easily managed by end users, like, for instance, using

the personal computer as E1 and a mobile device with cryptographic capabilities as

E2.

However, adding new environments could be of interest if the situation recommends

it and it is feasible from technical and usability viewpoints. In particular, incorporating

a third environment E3 is trivial, and would not imply any substantial modification

in the protocol. The receiver would only have to send PNRR2 to E3 in step (8) of

main protocol. The origin would then use such environment in step (9) to verify the

information and complete the transaction. It should be noted that, in this case, the

receiver would have to send m, `, tpl id and PNRO1 as well to allow the complete

verification of PNRR2 and PNRO1.

Next, OFEPSP+ main protocol is redesigned to permit the addition of as many

environments as desired. Steps (1) to (7) remain the same as in main protocol above:

160

9.3 Chapter Summary

(1) OE1 ← R : tpl [tpl id] , SR (tpl [tpl id])

(2) OE1 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(3) OE1 → R : m, `, tpl id, PNRO1

(4) R← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(5) R→ OE2 : m, `, tpl id, PNRO1, PNRR1

(6) OE2 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(7) OE2 → R : PNRO2

(8) R→ OE3 : m, `, tpl id, PNRO1, PNRR2

(9) OE3 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(10) OE3 → R : PNRO3

(11) R→ OE4 : m, `, tpl id, PNRO1, PNRR3

(12) OE4 ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(13) OE4 → R : PNRO4

...

(k) R→ OEn : m, `, tpl id, PNRO1, PNRRn−1

(k+1) OEn ← TTP-SP : SP, STTP−SP (SP) , extSP, STTP−SP (extSP)

(k+2) OEn → R : NRE

Being

PNROi = SSCDEi

(
SEi

O (PNRRi−1|SP/extSP)
)

, ∀ i = 2 to n

PNRRi = SR (PNROi|SP/extSP), ∀ i = 2 to n− 1

NRE = PNROn

9.3 Chapter Summary

Electronic transactions are prone to generate situations where some users are at a

disadvantage to others. Particularly, this Chapter has analyzed the situation where an

origin, after sending his sensitive information together with the evidence of origin to the

receiver, expects to receive the corresponding evidence of receipt. There is a moment

when the receiver has all necessary evidence from the buyer but without having made

any type of commitment. For resolving this unfair situation, different protocols, known

as fair exchange protocols, have been proposed so far, during which neither origin nor

receiver can gain any advantage during the transaction. In case that a dispute arises

about what actually happened during the transaction, evidence must be provided to a

judge.

In this Chapter a completely new and innovative fair exchange protocol has been

proposed. The protocol design is based on the origin’s signature environment division

161

9. AN OPTIMISTIC FAIR EXCHANGE PROTOCOL BASED ON
SIGNATURE POLICIES

(Chapter 7) and extended signature policies (Chapter 8). Also, a design based on an

offline TTP improves the overall performance provided that no misbehavior occurs.

By using this approach, the origin can decide whether trusting or not in the en-

tity that issues the signature policy and if accepts or not the terms established in it.

This new contribution in fair exchange protocols allows increasing the confidence in

e-commerce, because end users are now an active player that know and evaluate the

conditions that will manage the electronic transaction.

On the other hand, compliance to European and International electronic signature

standards assures that a solution based on this protocol will be interoperable with

other standard e-commerce frameworks, and can be quickly implemented. For easing

implementation processes, general guidelines covering key factors have also been widely

explained. IT staff that wants to put this protocol proposal in practice must take these

factors into account if they want to assure an efficient implementation of the protocol.

162

Part IV

Evaluation and Conclusions

163

Chapter 10

Evaluation

This Chapter comprises the evaluation of the thesis contributions, covering the taxon-

omy (Chapter 6), the paradigm of the division of the signature environment (Chapter

7), the extended electronic signature policy (Chapter 8) and the OFEPSP+ protocol

(Chapter 9).

In the first instance, the taxonomy is evaluated in Section 10.1 against the set of

general requirements a taxonomy should fulfill. This Section also includes the analysis

of the intensive survey and classification of attacks on digital signatures performed,

which results are given in Appendix B.

In Section 10.2, the formal proofs that demonstrate the benefits of the division

paradigm are given. Also, the proposal presented in this thesis to enhance the signa-

ture reliability is evaluated against the attack categories identified in the taxonomy,

analyzing to what extent our proposal improves the current state of the art.

The experimental implementation developed is explained in Section 10.3. The im-

plementation serves two purposes. On the one hand, to prove the correctness of the

validation algorithm of the extended electronic signature policy framework under sev-

eral test cases. This algorithm, which pseudo-code is given in Appendix C, is indepen-

dently evaluated, no matter which protocol would further use it. On the other hand,

the implementation intends to prove the executability and feasibility of OFEPSP+ by

a simulation of the protocol, and by which the correctness of the division paradigm and

the validation algorithm are also proved.

Section 10.4 contains the formal analysis of the security of OFEPSP+ respecting the

intruder model of Dolev and Yao, using two tools that implement automated reasoning

techniques: the Automated Validation of Internet Security Protocols and Applications

(AVISPA) and the Security Protocol ANimator for AVISPA (SPAN). An informal anal-

ysis of the fairness property of the protocol is also provided.

165

10. EVALUATION

10.1 Evaluation of the Taxonomy

A taxonomy should be designed to satisfy a set of general requirements [158]. The

evaluation of the taxonomy proposed in Chapter 6 is given in Section 10.1.1. In addition,

the results and analysis of an intensive survey and classification of 112 attacks found

in the literature (see Appendix B) is presented in Section 10.1.2. This survey intends

not only to demonstrate the completeness of the taxonomy but also to review the most

relevant attacks on digital signatures along with possible countermeasures.

10.1.1 Evaluation against general requirements

A taxonomy should be generally acceptable in the field of application for which it is

designed. Obviously, this property can be satisfied only if the taxonomy is accessible by

others and approved as valid after some time of study. The taxonomy proposed in this

thesis builds on previous work that has had relevant impact in the scientific community.

The taxonomy follows the well-known concept of dimension, which has been proved to

be a good way for providing a holistic view of the field of study. Though it is still to

be seen if the proposed taxonomy is accepted by the community, we are confident of it.

A taxonomy should be exhaustive in the sense that it covers all known related

specimen. This property is hard to be fulfilled, since the classification of every known

phenomenon is near impossible, specially in such a dynamic field like the information

technology. However, the evaluation of a taxonomy against real samples is paramount

to verify its correctness and completeness. The larger the number of samples classified,

the higher the level of assurance. In our case, we have successfully classified 112 attacks

(see Appendix B). Moreover, our method of classification permits the taxonomy to

evolve along the time due to the refinement stage. Consequently, it can incorporate

new categories if required.

A taxonomy should be mutually exclusive. Each specimen should be classified

under, at the most, one category of the taxonomy. The method of classification provided

in Chapter 6 and the design of the taxonomy assure that an attack cannot be classified

into multiple categories in a dimension. The possibility to select several subcategories

in dimension Target of the Attack does not violate this principle, but allows to classify

several elements affected by the attack, if necessary.

A taxonomy should be comprehensible in a manner that it should be under-

standable and applicable by non-expert users. On the contrary, our taxonomy requires

specific IT security knowledge, requiring the person in charge of the classification to

have a deep understanding of security and the attack itself.

A taxonomy should be deterministic and repeatable. The method applied for

the classification should be clear and unambiguous, and it should be possible to repeat

166

10.1 Evaluation of the Taxonomy

the classification of a specimen, obtaining the same result as in previous classifications

of the same specimen. In this work, a simple but effective method of classification

is provided along with the taxonomy, facilitating a trained user the classification task.

However, we do not guarantee that our method of classification is deterministic, though

we hope that it can lead to homogeneous classifications when the available information

of the attack is detailed enough.

A taxonomy should use widely accepted terminology and be appropriate.

The terms and definitions used by the taxonomy should comply with established and

well-known terminology, and it should be based on a reference model and a well-defined

set of restrictions (if any) [9]. The proposed taxonomy is based on standard system

models [46, 47] and a well-defined threat model, using terms extracted from widely

accepted and standard sources. The provided reference model assures that the person in

charge of classifying or searching for an attack can know exactly which is the underlying

model of applicability.

A taxonomy should be focused in order to be useful, being specific to a certain field

of knowledge. This taxonomy is particularly focused on attacks on digital signatures,

and more specifically on those that may affect the security of the signing and verification

processes, which are the most critical stages in the digital signature life-cycle.

Finally, a taxonomy should be useful for the users belonging to the field of appli-

cation. We humbly think that this taxonomy fills a current gap in the field of digital

signatures, once their relevance and importance have become obvious after the approval

of specific legislation and standards, the spread of related technology and their com-

mon application in real-life online scenarios. This systematic categorization of attacks

on digital signatures will allow developers to build more robust and secure solutions,

counteracting current attacks by designing countermeasures of general applicability.

10.1.2 Survey and classification of attacks on digital signatures

An intensive survey and classification of 112 attacks on digital signatures found in the

literature (a few of them proposed by the author in this thesis) has been made, and

its results are included in Appendix B. We have found a significant higher number

of attacks involved in the signature creation process than attacks intended to subvert

the verification process. In particular, the survey covers 81 attacks focused on the

signature generation stage, while the remaining 31 attacks correspond to attacks on

the verification stage.

It should be mentioned that the survey of attacks does not intend to demonstrate

a statistical distribution of the types of attacks on digital signatures. The attacks

have been selected from the literature according to their relevance. As a result, no

strong conclusion should be made on the likelihood of occurrence of each type of attack.

167

10. EVALUATION

Figure 10.1: Number of attacks per goal category.

Notwithstanding, we do think that some conclusions can be made respecting the impact,

dangerousness and profile of the surveyed attacks. Furthermore, the large number of

surveyed attacks permits to prove the completeness of the taxonomy to a large extent,

as commented in Section 10.1.1.

Figure 10.1 depicts the number of attacks per goal category. It is clear that threats

to the signature generation process (represented by categories D1-CAT1, D1-CAT2 and

D1-CAT3), and in particular those pursuing goals D1-CAT1 (25 out of 112 (22,3%))

and D1-CAT2 (49 out of 112 (43,7%)), are the most attractive ones for both attackers

and researchers. In our opinion, the justification lies in that the generation process

is the most critical stage during the life-cycle of a signature, and also the one that is

most profitable for the attacker if compromised. In this sense, we see that most of the

attacks (almost half of the total) are designed to use the signature creation data for

malicious purposes (goal D1-CAT2), followed by attacks aimed at deceiving the user

during the signing process (goal D1-CAT1). Few attacks pursued goal D1-CAT3 (7 out

of 112 (6,2%)). Observing the attacks on the verification stage, we found few attacks -

only 2 - oriented to trick the verifier respecting the identity of the signer, represented

by goal D1-CAT4 (2 out of 112 (1,7%)), while the number of attacks according to goal

dimensions D1-CAT5 (13 out of 112 (11,6%)) and D1-CAT6 (16 out of 112 (14,2%)) is

more balanced.

We consider that it is important to analyze the distribution of attack categories in

two cases: the number of attacks that focused on each target versus the goal dimen-

sion, and the number of attacks that employed each method of attack versus the goal

dimension. These two viewpoints will permit us to discover the targets and methods

involved in the most relevant attacks on digital signatures found.

Figure 10.2 shows that the most commonly affected targets, at the generation stage

(goals D1-CAT1, D1-CAT2 and D1-CAT3), are: the SCA (15 attacks), the SSCDev

168

10.1 Evaluation of the Taxonomy

(14 attacks), the SCDev (12 attacks), the Document processor (10 attacks), and the

Document to be signed (10 attacks). On the other hand, most commonly affected

targets, from the verification viewpoint, are: the SVA (13 attacks) and the Document

processor (10 attacks).

Figure 10.2: Distribution of attacks: Target versus Goal.

169

10. EVALUATION

These elements are directly involved during the signing and verification operations.

Therefore, it is reasonable to think that they are more likely to be attacked than other

system components. Consequently, these elements should be carefully designed and

implemented to increase the level of assurance of their correctness and trustworthiness.

Notwithstanding, the existence of vulnerabilities or weaknesses in other components,

like the underlying operating system (6 attacks) or the cryptography used (8 attacks),

may open the door for an attack to succeed, no matter the high reliability of the

aforementioned elements.

Targets with zero mappings mean that they were not found in the surveyed attacks.

However, they can also be a potential victim in an attack on digital signatures. Their

direct or indirect participation during a signing operation make them an objective as

well.

On the other hand, we present the distribution of methods of attack versus the

goal in the cases of the generation and verification phases. Figure 10.3 shows that the

distribution of methods of attack applicable to the generation stage versus the goal

dimension is homogeneous, though the collection of side-channel attacks (22 attacks in

total), content modification methods (10 attacks) and authentication bypass (9 attacks)

prevail. In our opinion, this homogeneous distribution proves that there is a wide variety

of attack methods that can undermine the security of a signing operation. Also, the

distribution respecting axis Y of the Figure demonstrates the specificity of the attacks,

each of which is employed to achieve a single specific goal.

Finally, Figure 10.4 illustrates the distribution of methods of attack applicable to

the verification stage versus the goal dimension. As in the previous distribution, it can

be seen that there is a clear specificity in the attacks surveyed. Also, two methods

prevail: those focused on modifying the appearance of the signed document by means

of document masquerading attacks (10 attacks), and, to a lesser extent, methods that

masquerade the verification result shown (5 attacks).

As can be seen in Figures 10.3 and 10.4, the method of attack raises accurate in-

formation about the pursued goal, and vice versa. Each classified method is mapped

to just one goal, contrary to the target distribution, where some targets are mapped

to more than one goal. This can help making informed decisions when implementing

security measures to counteract certain types of attacks or avoid the attacker to achieve

a certain goal. As mentioned before, attacks that pursue goal D1-CAT2 are the most

dangerous ones, specially those that compromise the signature creation data. Conse-

quently, systems should be designed and implemented to particularly mitigate the risks

associated to attacks that entail goal D1-CAT2.

170

10.1 Evaluation of the Taxonomy

Figure 10.3: Distribution of attacks: Method versus Goal (generation).

171

10. EVALUATION

Figure 10.4: Distribution of attacks: Method versus Goal (verification).

172

10.2 Analysis of the Enhancement of Evidence Reliability

10.2 Analysis of the Enhancement of Evidence Reliability

In this Section we evaluate to what extent our proposal enhances the reliability of di-

gital signature-based evidence, demonstrating the improvement achieved. In the first

instance, the formal proofs that demonstrate the benefits of the division of the sig-

nature environment are given in Section 10.2.1. The demonstration also raises some

recommendations on the configuration of the set of environments, gives some numerical

examples and outlines a theoretical approach to achieve perfect security. In the second

instance, Section 10.2.2 provides a theoretical analysis of the reduction achieved by

our thesis proposal on the probability of a successful attack for each attack method

identified in the taxonomy of Chapter 6. In this case, the thesis proposal has a broader

concept, including not only the division paradigm but also the extended electronic

signature policies, and associated contributions.

10.2.1 Formal proofs

The formal proofs that demonstrate the benefits of the division paradigm are given in

this Section. Definitions 1 (evidence establishment), 2 (attack on an environment) and

3 (probability of a successful attack (PSA)) given in Chapter 7 apply here.

10.2.1.1 Provable benefits of using several environments

Next, the proofs of the benefits of using several environments for evidence establishment

are given.

Consider the scenario shown in Figure 10.5. In the Figure, a division of the environ-

ment is represented. As can be seen, the user owns several and different environments

for the evidence establishment. As mentioned above, evidence establishment may imply

a signature creation or a signature verification.

From this scenario we establish the next formal rationale.

Suppose a set of environments Set(E) of size n ≥ 2, being n the number of

possible environments available to the user, each of which with a specific PSA. The

PSA on Set(E) is given by next equation:

PSA (Set (E)) =
n∏

i=1

PSA (Ei) (10.1)

It should be noted that we are considering the resultant PSA as the probability of

occurrence of n independent events. However, subverting the security of a process in

which several environments are needed implies a kind of collaborative attack from the

attacker’s side. Considering independent events means that what is being considered

173

10. EVALUATION

Figure 10.5: A division of the signature environment.

to calculate the resultant PSA for a set of environments is only the PSA on each

environment. Therefore, it is not considered whether the attacks carried out on E1

and E2 are collaborative, and thus are capable of undermining the division principle,

or, on the contrary, are independent attacks carried out by independent malicious

agents that do not share their achievements. In the latter, though both environments

were compromised, there would be no fraudulent valid evidence that consisted of the

signatures of both environments. Each attacker would have generated a fraudulent

signature on his own, but not shared it with the other one to compose the valid evidence.

Consequently, an attack on the division principle would have not succeeded. Thereby,

the actual PSA for a set of environments is even lower, as more a specialized attack is

required. Notwithstanding, we will maintain this value of PSA for the analysis.

Claim 1. Increasing the number of environments needed in conjunction to establish

evidence enhances the reliability of the evidence establishment, and, as a result, the

evidence itself.

Proof 1. Let PSA(E) be the probability of a successful attack on a single environ-

ment E. The PSA of Set(E) is always lower than the PSA of a single environment E

if an environment E′ member of the set Set(E) has a PSA lower than or equal to the

PSA of the environment E, and at least one of the rest of the environments members

of the set has a PSA lower than 1.

PSA (Set (E)) < PSA (E) , if ∃ E′ ∈ Set (E) /

PSA(E′) ≤ PSA(E) ∧
n−1∏
i=1

PSA (Ei) 6= 1, Ei ∈ Set (E) ∧ Ei 6= E′ (10.2)

174

10.2 Analysis of the Enhancement of Evidence Reliability

Remarks. The direct consequence of Proof 1 is that adding new environments will

always improve the security of the system by decreasing the final PSA. The assumption

of adding environments to the set with a PSA lower than 1 is reasonable, as the user

would never use an environment which is known a priori to be compromised.

10.2.1.2 Provable benefits of using heterogeneous environments

Section 10.2.1.1 has proved that using several environments increases the level of se-

curity of the system. This Section analyses the impact of configuring a set Set(E) of

environments to be used for evidence establishment in case the set consists of either

homogeneous or heterogeneous environments.

Definition 1. We define homogeneous environments as those environments that

can be attacked by the same type of attacker carrying out the same attack process. That

is, their implemented security measures, configuration and type of potential attacker

are the same. As a result, the PSA for those environments remains the same.

Let PSAhom(E) be the resultant PSA of n homogeneous environments:

PSAhom (E) = PSA (E) .PSA (E) ...PSA (E)

PSAhom (E) =
n∏

i=1

PSA (E) = (PSA (E))n (10.3)

Figure 10.6 depicts a scenario where the user owns homogeneous environments.

Figure 10.6: A homogeneous set of environments.

Definition 2. We define heterogeneous environments as those of different nature,

different implemented security measures, configuration and/or different type of poten-

175

10. EVALUATION

tial attacker. As a result, heterogeneous environments can have the same or different

PSA.

Let PSAhet(E) be the resultant PSA of n heterogeneous environments:

PSAhet (E) = PSA (E1) .PSA (E2) ...PSA (En)

PSAhet (E) =
n∏

i=1

PSA (Ei) (10.4)

From the definitions above, we establish the next formal rationale.

Claim 2. Replicating the same environment in the set of environments Set(E)

(homogeneous environments) always provides a higher level of security than a configu-

ration based on heterogeneous environments providing that the chosen environment is

the most secure one among all possible environments.

Proof 2. From 10.3 and 10.4 we can deduce that:

PSAhom (E) < PSAhet (E) ⇒ (PSA (E))n <

n∏
i=1

PSA (Ei) , (10.5)

if ∃ PSA (Ej) < PSA (Ei) , ∀ i = 1...n and j ∈ {1...n} (10.6)

Claim 3. In a more general manner, replicating the same environment in the set of

environments Set(E) (homogeneous environments) provides a higher level of security

if the resultant PSA in 10.3 is lower than that obtained from a configuration based on

heterogeneous environments 10.4.

Proof 3. Based on PSAhom (E) and PSAhet (E) given in 10.3 and 10.4 respectively,

there can be a configuration of homogeneous environments where:

PSAhom (Ej) < PSAhet (E) ⇒ (PSA (Ej))
n <

n∏
i=1

PSA (Ei) , j ∈ {1...n} (10.7)

Discussion. Under certain circumstances, a configuration based on homogeneous

environments may suffer from attacks with a probability much higher than PSAhom(E).

In computer science, monoculture is defined as a community of computers, all running

identical software with identical configuration settings, and thus, all of them having

the same vulnerabilities and prone to the same attacks. In this sense, a homogeneous

environment based on connected computers represents this sort of community. For

instance, a home PC connected to the corporative network where a second environment

is placed and both of them having the same software and configuration is an example

of monoculture scenario.

176

10.2 Analysis of the Enhancement of Evidence Reliability

As mentioned by Geer et al. in [82], a monoculture of networked computers is a

convenient and susceptible reservoir of platforms from which to launch attacks, and

where these attacks can and do cascade. That is, once one of these computers is

infected, the rest can be reached and infected with a probability equal to 1. Thus, the

PSAhom(E) is drastically increased to the PSA of just one environment.

According to [82], risk diversification is a primary defense against aggregated risk

when that risk cannot otherwise be addressed. In this sense, artificial diversity, a term

which covers any technique that creates diversity in information systems for security

purposes, was firstly proposed by Forrest et al. in [79] to prevent specific kinds of

attacks. Whereas artificial diversity focuses on techniques that modify the same piece

of software, true diversity represents platforms where different software runs. Both

in artificial and true diversity the result is that the attacker is forced to individualize

exploits.

Contrary to this, in [210] the authors present some disadvantages against diversity,

defending monoculture as a more robust approach against current threats. In their

opinion, deploying diverse systems entails more complex and error-prone configurations,

exposing vulnerabilities. Besides, while they accept that monoculture facilitates the

spread of attacks in networked computers, they consider that diversification is not

always as effective as intended and may involve more complicated testing and debugging

procedures, especially in case of artificial diversity.

As extensively demonstrated [82], the risk of monoculture is clear, particularly

in case of indiscriminate attacks, that is, attacks that intend to spread as fast and

extensively as possible, like Internet malware. In this sense, the analysis given in this

Section was developed assuming the existence of independent events, and thus fits with

a scenario of indiscriminate attacks. When using diverse systems, the propagation is

stopped as soon as the attacker finds a platform which implementation or configuration

differs from the one considered in the exploit designed.

The formal proofs of this Section for homogeneous configurations stand as long as

the malware cannot automatically reach one environment from another. Otherwise,

and as explained above, the division principle is undermined. This requirement does

not apply to heterogeneous configurations.

In addition, we find an added benefit in heterogeneous configurations when observ-

ing real world scenarios. In practice, users generally use highly risky environments (high

PSA), e.g. PC, for their daily operations, like home banking or e-commerce transac-

tions. As a result, claims 2 and 3 are clearly difficult to be achieved. In other words,

it is improbable that a homogeneous configuration of such type of environment poses

177

10. EVALUATION

a PSA lower than that of a heterogeneous configuration. As a result, if the user em-

ploys a risky environment as one of the environments, using additional heterogeneous

environments (e.g. a mobile device) will surely provide a higher level of security.

10.2.1.3 Numerical examples

Tables 10.1 and 10.2 show some numerical examples of the reduction of the resultant

PSA when applying the paradigm of the division of the signature environment. Table

10.1 represents some cases of using different number of environments in heterogeneous

configurations, while Table 10.2 is focused on homogeneous configurations.

For illustration purposes we consider the next environments, with their correspond-

ing PSA between parenthesis (range between 0 - zero probability of being compromised

- and 1 - certainty of having been compromised): E1 (0,1), E2 (0,3), E3 (0,5) and E4

(0,8). We calculate the resultant PSA when applying the division paradigm with a set

of 2, 3 and 4 environments, and compare the results with the PSA of a configuration

based on a single environment with the lowest PSA, that is, E1.

E1 E2 E3 E4 Final PSA Reduction/Increase (%)

0,1 - - - 0,1 0 (0%)

0,1 0,3 - - 0,03 -0,07 (-70%)

0,1 - 0,5 - 0,05 -0,05 (-50%)

0,1 - - 0,8 0,08 -0,02 (-20%)

- 0,3 0,5 - 0,15 +0,05 (+50%)

- - 0,5 0,8 0,4 +0,3 (+300%)

0,1 0,3 0,5 - 0,015 -0,085 (-85%)

0,1 0,3 - 0,8 0,024 -0,076 (-76%)

0,1 - 0,5 0,8 0,04 -0,06 (-60%)

- 0,3 0,5 0,8 0,12 +0,02 (+20%)

0,1 0,3 0,5 0,8 0,012 -0,088 (-88%)

Table 10.1: Numerical examples of the PSA reduction when applying the paradigm of
the division of signature environment in a heterogeneous configuration

As can be seen in Table 10.1, heterogeneous configurations that add new environ-

ments to E1 significantly decrease the resultant PSA (from 20% to 88% of reduction),

obtaining more marked reduction as the number of environments increases (from 20% to

70% of reduction for 2 environments, from 60% to 85% of reduction for 3 environments,

and 88% of reduction for the 4 environments). It should be noted that some hetero-

geneous configurations do not decrease the resultant PSA but increase it respecting

environment E1 if those environments have a high PSA. The cause is that the reference

178

10.2 Analysis of the Enhancement of Evidence Reliability

environment is the one with lowest PSA (E1), which is indeed significantly lower than

the PSA of the rest of environments.

E E E E Final PSA Reduction/Increase (%)

0,1 - - - 0,1 0 (0%)

0,1 0,1 - - 0,01 -0,09 (-90%)

0,1 0,1 0,1 - 0,001 -0,099 (-99%)

0,1 0,1 0,1 0,1 0,0001 -0,0999 (-99,9%)

0,3 0,3 - - 0,09 -0,01 (-10%)

0,3 0,3 0,3 - 0,027 -0,073 (-73%)

0,3 0,3 0,3 0,3 0,0081 -0,0919 (-91,9%)

0,5 0,5 - - 0,25 +0,15 (+50%)

0,5 0,5 0,5 - 0,125 +0,025 (+25%)

0,5 0,5 0,5 0,5 0,0625 -0,0375 (-37,5%)

0,8 0,8 - - 0,64 +0,54 (+540%)

0,8 0,8 0,8 - 0,52 +0,42 (+420%)

0,8 0,8 0,8 0,8 0,416 +0,316 (+316%)

Table 10.2: Numerical examples of the PSA reduction when applying the paradigm of
the division of signature environment in a homogeneous configuration

On the other hand, Table 10.2 corroborates that increasing the number of environ-

ments significantly reduces the resultant PSA, specially when the homogeneous configu-

ration is based on the environment with the lowest PSA, as formally demonstrated in

Section 10.2.1.2 (from 90% to 99,9% of reduction).

It is interesting to note how the homogeneous configurations of environment E2

(PSA 0,3), which has a PSA three times as high as the reference environment E1,

provide a PSA significantly lower than using the single environment E1 (from 10%

to 91,9% of reduction). It is also clear how a homogeneous configuration based on a

high PSA (E3 and, particularly, E4) does not reduce, but increases, the resultant PSA

respecting E1 (an increase of up to 540%).

10.2.1.4 Towards perfect security

Evidence that cannot be repudiated should provide an irrefutable proof whether the

particular event actually took place or not (see Chapters 2 and 3).

Shannon introduced the concept of perfect security in [213]. He established that

an encryption system is perfectly secure if the attacker does not learn anything at all

from observing the ciphertext. In our particular context, we consider that:

179

10. EVALUATION

A system is perfectly secure if the attacker is completely unable to generate fraud-

ulent evidence on behalf of the user or make fraudulent evidence be verified as valid

evidence.

That is, the probability of performing an attack on the system for fraudulent evi-

dence establishment is zero.

The theoretical approach in an environment division principle is as follows. Assum-

ing that the user has access to an infinite number of environments, the PSA in the

resultant scenario tends to zero providing that new environments added have a PSA

lower than 1:

lim
n→∞

n∏
i=1

PSA (Ei) = 0, PSA (Ei) 6= 1 (10.8)

Though it is a purely theoretical result which put in practice is obviously infeasible,

it supports previous claim 1 and demonstrates that the reliability to achieve can be

substantially enhanced by adding new environments on demand. On the contrary,

there must be a trade-off between the number of environments needed by the user

to produce non-repudiation evidence and the pursued reliability. Under the division

principle, lower PSA, and thus higher reliability of evidence, implies a higher number

of environments. The decision regarding the number of environments needed should be

made on a case-by-case basis.

10.2.2 Analysis respecting the taxonomy

In this Section we analyze and calculate the theoretical probability of a successful attack

on evidence establishment and for each attack category identified in the taxonomy pre-

sented in Chapter 6. The analysis is performed considering two different circumstances:

if our thesis proposal is applied, and if it is not.

In the analysis, we also provide a reasoning of the capability of our proposal to

counteract the attack categories of the taxonomy. In particular, our analysis is focused

on the methods of attacks that can be used by the attacker to subvert the reliability of a

digital signature generation or verification process. Therefore, we will take into account

only the dimension two of the taxonomy, not including the dimension one (goal) and

dimension three (target). For usefulness purposes, only subcategories that describe the

specificity of the attack method are considered, being marked in bold. For example,

analyzing category D2-CAT2: Modification prior to signature computation is of no use

as more specific subcategories exist, and that provide more information for the analysis.

For each subcategory, the probability of a successful attack (PSA) of such method

on a signature creation environment (SCE) or signature verification environment (SVE)

that implements our proposal (notation Set(E)[SCE] or Set(E)[SV E]) is calculated,

180

10.2 Analysis of the Enhancement of Evidence Reliability

and compared with the PSA on a single environment (notation E[SCE] or E[SV E]).

The PSA is calculated for SCE, SVE or both depending on the method of attack (see

Table 6.2, which establishes the relationship between the dimension Attacker’s Goal

and dimension Method of Attack).

It should be noted that the PSA calculation and comparison is from a theoretical

viewpoint, not using concrete values. Some subcategories are grouped for the analysis

if the reasoning and PSA calculation is the same.

Our proposal consists of the next thesis contributions, indicating an acronym for

each one for simplicity purposes during the evaluation:

• Division of the Signature Environment, DSE (Chapter 7)

• Conscious data verification, CDV (Chapter 7)

• Restricted format of data to be signed, RFDTBS (Chapter 7)

• Extended electronic signature policies, EXTSP (Chapter 8)

• Certificate extension, CE (Chapter 8)

D2-CAT1: Environment manipulation

The formal PSA reduction is achieved due to DSE, CDV and EXTSP. CDV helps

detecting, at any of the environments, any undesired change during the evidence gen-

eration or verification.

PSA (Set (E[SCE])) = PSA (Set (E[SV E])) =
∏n

i=1 PSA (Ei)

On the contrary, the formal PSA for a single environment is as follows.

PSA (E[SCE]) = PSA (E[SV E]) = PSA (E)

In this case the enhancement is theoretically demonstrated by simply comparing

the obtained PSAs. The practical enhancement will depend on the number and nature

of the environments used.

D2-CAT2: Modification prior to signature computation

D2-CAT2.1: Document modification

D2-CAT2.1.1: Dynamic content inclusion, and all subcategories

D2-CAT2.2: Attribute modification

181

10. EVALUATION

D2-CAT2.2.1: Dynamic content inclusion, and all subcategories

The DSE, CDV and EXTP are not effective against this type of attack, as the

attacker only needs to compromise the first environment in order to include the dynamic

content into the data to be signed (DTBS), either the document or attributes. The

modified DTBS would then be transmitted from one environment to another, even

though these environments had not been compromised by the attacker. If the dynamic

content could be enforced by the attacker at will and once the evidence had been

completed, the user would not notice that an attack had been performed.

Therefore, in this case the enhancement is achieved thanks to RFDTBS, which

prevents the attacker from including dynamic content into the DTBS.

PSA (Set (E[SCE])) = 0

On the other hand, the formal PSA for a single environment remains as follows.

PSA (E[SCE]) = PSA (E)

It should be noted that PSA above would be 0 as well if RFDTBS was applied as

a requirement for the single SCE.

D2-CAT2: Modification prior to signature computation

D2-CAT2.1: Document modification

D2-CAT2.1.2: Content modification

D2-CAT2.2: Attribute modification

D2-CAT2.2.2: Content modification

D2-CAT2.3: DTBS modification

D2-CAT2.4: DTBSR modification

The formal PSA reduction is achieved due to DSE, CDV and EXTSP. CDV helps

detecting, at any of the environments, any undesired change during the evidence gen-

eration.

PSA (Set (E[SCE])) =
∏n

i=1 PSA (Ei)

On the contrary, the formal PSA for a single environment is as follows.

182

10.2 Analysis of the Enhancement of Evidence Reliability

PSA (E[SCE]) = PSA (E)

In this case the enhancement is theoretically demonstrated by simply comparing

the obtained PSAs. The practical enhancement will depend on the number and nature

of the SCEs used.

D2-CAT3: Modification post signature computation

D2-CAT3.1: External content

The DSE, CDV and EXTSP are not effective against this type of attack, as the

attacker only needs to modify the referenced content once the evidence has been gen-

erated. As a result, only RFDTBS can counteract this method of attack. RFDTBS

prevents the user from including a reference to external content in the data to be signed,

being this attack completely thwarted.

PSA (Set (E[SCE])) = 0

On the other hand, the formal PSA for a single environment remains as follows.

PSA (E[SCE]) = PSA (E)

Again, it should be noted that PSA above would be 0 as well if RFDTBS was ap-

plied as a requirement for the single SCE.

D2-CAT3: Modification post signature computation

D2-CAT3.2: Cryptanalysis, and all subcategories

An attack focused on finding a collision in the hash function used for the digital

signature computation highly depends on the internal structure of the hash function.

Design-independent attacks basically consist of brute force attacks, what may lead to a

complexity of O(2n/2) (worst case) if the hash function is collision resistant (we assume

that a collision resistant hash function is used for both a set of environments and a

single environment).

Therefore, and assuming P (Hi) as the probability to find a collision in hash function

Hi, we can establish the next PSA as the resultant PSA in case a different hash function

is used in each environment of Set(E).

183

10. EVALUATION

PSA (Set (E[SCE])) =
∏n

i=1 P (Hi)

In case of reusing the same hash function in different environments, the resultant

PSA increases accordingly.

On the other hand, the formal PSA for a single environment is the next.

PSA (E[SCE]) = P (H)

As can be seen, the DSE does not enhance the reliability of evidence on its own,

but in conjunction with the diversity concept applied to the hash functions used. This

requirement can be established at signature policy level, specifying the algorithms ac-

ceptable for each digital signature.

D2-CAT4: Unauthorized invocation of the signing function

D2-CAT4.1: Compromise of the signer authentication data (SAD)

D2-CAT4.1.1: Social engineering

Although the PSA reduction might seem difficult to be formalized at first glance,

as the success of social engineering techniques highly depends upon personal and social

characteristics of the users, it is actually achieved due to DSE, CDV, EXTSP and CE.

Depending on the number of (S)SCDev being used by the signer, and that in turn

depends on the way that the environment and the signature creation data (SCD) have

been bound to each other (see Chapter 7), the reduction is justified using a different

rationale.

(a) If the SCD and the environment are bound to each other by means of the

environment attestation technique, then the signer could use a single (S)SCDev to

compose the valid evidence. Though the attacker might only need to obtain one SAD,

it would still need to compromise each environment to generate the valid evidence.

(b) On the contrary, if the binding is established by procedure, then the user is

forbidden to share the same SCD between different environments. Consequently, and

as well as the attacker would need to obtain as many SADs as established by the

procedure (what would possibly make the signer suspect that an attack is being carried

out), it would need to compromise every environment to generate the valid evidence.

Finally, CE contributes by preventing an attacker that has compromised a single

environment to generate binding signatures on behalf of the signer, while CDV permits

the signer to detect any evidence generation started from a compromised environment.

Both in (a) and (b), the formal PSA reduction remains as follows:

184

10.2 Analysis of the Enhancement of Evidence Reliability

PSA (Set (E[SCE])) =
∏n

i=1 PSA (Ei)

On the other hand, the formal PSA for a single environment is as follows. It should

be mentioned that, in this case, the PSA highly depends on the capability to obtain the

SAD from the signer, which in turn depends upon personal and social characteristic of

the signer.

PSA (E[SCE]) = PSA (E)

D2-CAT4: Unauthorized invocation of the signing function

D2-CAT4.1: Compromise of the signer authentication data (SAD)

D2-CAT4.1.2: SAD interception, and all subcategories

D2-CAT4.1.3: Guessing

D2-CAT4.2: Authentication Bypass

D2-CAT5: Compromise of the signature creation data (SCD), and all sub-

categories, except D2-CAT5.4: Cryptanalysis

The formal PSA reduction is achieved due to DSE, CDV, EXTSP and CE. CDV

helps detecting, at any of the environments, any undesired evidence generation started

by the attacker. CE contributes by preventing an attacker that has compromised a

single environment or SCD from generating binding signatures on behalf of the signer.

PSA (Set (E[SCE])) =
∏n

i=1 PSA (Ei)

On the contrary, the formal PSA for a single environment is as follows.

PSA (E[SCE]) = PSA (E)

In this case the enhancement is theoretically demonstrated by simply comparing

the obtained PSAs. The practical enhancement will depend on the number and nature

of the SCEs used.

D2-CAT5.4: Cryptanalysis

When this method of attack is applied, the PSA reduction is derived in the same way

as in D2-CAT3.2: Cryptanalysis. Therefore, and assuming P (PKCi) as the probability

185

10. EVALUATION

to obtain the private key (SCD) used in certain public key algorithm PKCi, we can

establish the next PSA as the resultant PSA in case a different SCD is used in each

environment of Set(E).

PSA (Set (E[SCE])) =
∏n

i=1 P (PKCi)

In this case, and contrary to D2-CAT3.2: Cryptanalysis, the resultant PSA remains

the same due to the binding principle between the SCD and the environment. That is,

if the user reuses the same SCD in every environment, then a binding by environment

attestation is mandatory, implying that each environment uses a different SCD. Oth-

erwise, if a binding by procedure is applied, then the user is required to use a different

SCD at each environment.

On the other hand, the formal PSA for a single environment is the next.

PSA (E[SCE]) = P (PKC)

Like in hash functions, the DSE enhances the reliability of evidence in conjunction

with the diversity concept applied to the SCD used, implemented in this case by means

of the binding principle.

D2-CAT6: Influence on certificate verification result

D2-CAT6.1: Alteration of subscriber’s revocation request, and all subcate-

gories

Though these methods of attack aim at subverting the verification process, the

attacks themselves must be carried out on the SCE. The formal PSA reduction is

achieved due to DSE, with a particular rationale given further.

PSA (Set (E[SCE])) = m/n ∗ (
∏m

i=1 PSA (Ei)), with m ≥ 1 and n ≥ 2

The formula above is a generalization by which the attacker chooses m environments

selected among all environments (n), with a probability m/n of having chosen the right

environment from which the revocation will be requested. Obviously, if our proposal is

applied, then n must be greater than or equal to 2. In addition, it is required that the

attacker compromises each selected environment.

On the other hand, the formal PSA for a single environment is represented next,

and coincides with the case of m and n having the value of 1. It is being assumed that

186

10.2 Analysis of the Enhancement of Evidence Reliability

the user owns a single environment from which generating the signature and requesting

the certificate revocation.

PSA (E[SCE]) = PSA (E)

Independently of which is the value of m in the formula above, the resultant

PSA (Set (E[SCE])) will always be lower than PSA (E[SCE]).

D2-CAT6: Influence on certificate verification result

D2-CAT6.2: Alteration of certificate status verification

D2-CAT6.2.1: Grace or cautionary period bypassing, and all subcategories

Again, though these methods of attack are focused on subverting the verification

process, they imply that the signature creation data (SCD) needed to generate the

evidence has been previously compromised. Even subcategory D2-CAT6.2.1.3: Exploit

delay in CA’s revocation request processing assumes that the signer can have noticed

the SCD compromise and requested the certificate revocation. Therefore, the formal

PSA reduction is achieved due to DSE and EXTSP.

PSA (Set (E[SCE])) =
∏n

i=1 PSA (Ei)

The formal PSA for a single environment is as follows.

PSA (E[SCE]) = PSA (E)

In this case the enhancement is theoretically demonstrated by simply comparing

the obtained PSAs. The practical enhancement will depend on the number and nature

of the SCEs used.

D2-CAT6: Influence on certificate verification result

D2-CAT6.2: Alteration of certificate status verification, and all subcate-

gories, except D2-CAT6.2.1: Grace or cautionary period bypassing

D2-CAT6.3: Untrusted trust anchor/trust point addition

D2-CAT6.4: Alteration of certificate integrity verification result

D2-CAT6.5: Alteration of certificate validity period verification result

D2-CAT7: Influence on signature verification result, and all subcategories

The formal PSA reduction is achieved due to DSE and EXTSP. It is assumed that

any modification of any message is carried out within the boundaries of the SVE.

187

10. EVALUATION

PSA (Set (E[SV E])) =
∏n

i=1 PSA (Ei)

The formal PSA for a single environment is as follows.

PSA (E[SV E]) = PSA (E)

In this case the enhancement is theoretically demonstrated by simply comparing

the obtained PSAs. The practical enhancement will depend on the number and nature

of the SVEs used.

10.3 Experimental Implementation

This Section explains the experimental implementation developed, which includes the

validation algorithm of the extended electronic signature policies framework, and a

simulator for OFEPSP+, where the validation algorithm is used and a virtual division

of the origin’s environment applied. An overview is given first in Section 10.3.1, covering

the software architecture, the electronic signature formats used and the set of signatures

composition. The results obtained from the evaluation of the validation algorithm

are provided in Section 10.3.2. Finally, Section 10.3.3 contains the description of the

simulator for OFEPSP+.

10.3.1 Overview

In order to evaluate the correctness and feasibility of the validation algorithm and

OFEPSP+ protocol, an experimental implementation has been developed.

In particular, the implementation covers the validation process of a set of signa-

tures in accordance with the requirements established in an extended electronic signa-

ture policy. This procedure is specified in Section 8.2.2, while the pseudo-code of the

validation algorithm developed is detailed in Appendix C. The procedure explained in

Section 8.2.1, where the generation of a signature according to the extended policy is

explained, has not been developed. Additionally, a simulator for OFEPSP+ has been

developed. The simulator instantiates each participant of the protocol, including two

virtual environments for the origin, and supports the main protocol and the abort and

recovery subprotocols.

The implementation has been made in Java language. Afterwards, the validation

algorithm has been tested using the JUnit Test Framework [128], while OFEPSP+

simulator has been tested by running different scenarios, including a normal protocol

execution (no participation of TTP is needed), and two different executions where the

abort and recovery subprotocols have to be executed.

188

10.3 Experimental Implementation

Figure 10.7: Overview of the architecture.

10.3.1.1 Architecture

Figure 10.7 shows the software layer architecture of the experimental implementation.

The Extended Electronic Signature Policies (ext-SP) framework provides a generic

and protocol-independent service to higher layers. For that reason, the framework has

been implemented and separately tested from OFEPSP+. As can be seen in the Figure,

the framework is limited to the validation algorithm and an auxiliary module that loads

the definition of the tree of signatures (TSi) to be used by the algorithm.

The signature engine implements the electronic signature generation and valida-

tion capabilities. Although the current experimental implementation deals only with

XAdES-EPES signatures, the engine has been designed to permit the integration of

other formats (e.g. XAdES-T, CAdES-BES, CAdES-EPES, etc.) in a transparent

way.

Both the ext-SP framework and the protocol layer (OFEPSP+ in particular) access

the signature capabilities through a generic facade which is independent from the par-

ticular signature format instantiated. The features needed by the factory to instantiate

a signature format implementation are indicated in the cryptographic configuration es-

tablished by the layer invoking the signature engine. The cryptographic configuration

includes features like the particular signature format to be instantiated, the crypto-

189

10. EVALUATION

graphic algorithms to be used by the signature implementation or the signature policy

information that orchestrates the generation and validation of the signature (in case of

AdES-EPES formats).

Finally, IAIK [109] has been used as the Cryptographic Provider. IAIK implements

the low level cryptographic capabilities according to the Java Cryptographic Architec-

ture and Java Cryptographic Extension [126]. Two IAIK toolkits have been used:

• IAIK XML Security Toolkit (XSECT) [105], which implements the upcoming

APIs for the Java platform: XML Digital Signatures APIs as specified by the

Java Specification Request JSR#105 ; and XML Digital Encryption APIs (not

used in the experimental implementation) as specified by JSR#106.

• IAIK XML Advanced Electronic Signatures (XAdES) add-on for XSECT [104],

which enables the creation of XAdES signatures according to ETSI TS 101 903

V1.3.2 standard [75].

10.3.1.2 Electronic signature format

As mentioned above, the design of the experimental implementation supports the addi-

tion of any electronic signature format in a transparent manner. However, and because

the goal of the experimental implementation is to serve as the basis for the validation al-

gorithm and protocol evaluation, we have restricted the supported formats to the XML

Advanced Electronic Signature (XAdES) format, as specified in [75]. More specifically,

we have chosen the Explicit Policy based Electronic Signature (XAdES-EPES) format.

The XAdES-EPES extends the definition of a basic electronic signature (XMLDSig

or XAdES-BES) to conform to the identified signature policy. Therefore, this format

is linked to the usage of a signature policy. However, the standard allows the inclusion

of optional information when creating the signature. Next, the information included in

the XAdES-EPES signatures used in our experimental implementation is given. Details

about the XAdES-EPES format can be found in the standard [75].

Because the signature format supported by the experimental implementation is

based on XML, then the extended signature policies had to be defined in XML as

well. Therefore, policies defined in ASN.1 have not been implemented. Please refer to

Appendix E for the detailed XML Schema Definition (XSD) of the policy.

Signing time

If a dependence, either absolute or relative, exists between two or more signatures

(indicated in the ext-SP), then a time reference must be used to determine whether the

dependence is fulfilled or not. The most reliable way of doing so is to use timestamps

190

10.3 Experimental Implementation

issued by a trusted Time-Stamping Authority (TSA) [5], and included in the signa-

ture as the xades:SignatureTimeStamp unsigned property. If a TSA is not available,

the time reference can be taken from the optional signed property named signing time

(xades:SigningTime), which specifies the time at which the signer (purportedly) per-

formed the signing process. Generally, the clock of the computer is used as the source

of time.

The source of time to use is not a decision that can be made by the signer nor

the verifier. It is the signature policy the place where this requirements is established.

Therefore, if the policy obliges to use a trusted TSA, and the signer or the verifier

does not include a timestamp in the signature, then the signature verification must

fail. However, and for the experimental implementation, we have discarded the usage

of a TSA, using the clock of the computer for producing the signing time value, as

defined in Section 7.2.1 of the XAdES standard [75]. The reason lies in that most test

cases demand an accurate and precise set of signatures in terms of the time at which

each signature is generated. For instance, some TSis used in certain test cases oblige a

signer to generate the signature minutes or even hours after another one was computed.

Therefore, the generation of the corresponding SSis (both for success and error cases)

would have implied an unfeasible delay during the composition of most set of signatures

for the test bench. As a result, we consider that, for the evaluation of the experimen-

tal implementation, XAdES-EPES signatures including the xades:SigningTime signed

property suffices.

Signing certificate

XAdES standard establishes in Section 4.4.1 that it is mandatory to protect the sign-

ing certificate with the signature, in one of two ways: either incorporating the signed

property called xades:SigningCertificate or not incorporating it but including the sign-

ing certificate within the ds:KeyInfo→ds:X509Data→ds:X509Certificate element and

signing it. In our experimental implementation we have developed both alternatives.

Our need was actually being able to access the whole certificate in order to retrieve

the subject distinguished name information, which is used by the extended signature

policy framework for establishing the mappings between the subjectDNs and the nodes’

signer’s identifiers.

Signature policy

We include the mandatory xades:SignaturePolicyIdentifier signed property, which

definition is given in Section 7.2.3 of the XAdES standard. This element explicitly

includes the signature policy identifier information. The explicit identifier form consists

191

10. EVALUATION

of the policy identifier and the hash of the document where the policy is specified. We

have not added any optional policy qualifier.

For test purposes, we have used a fixed value for the signature policy identifier:

http://jlopez.thesis.uc3m.es/SigPolicy/vXXX. In order to make different signers

follow different policies, we just modify the version (vXXX) of the policy in the URI

(e.g. v1.0, v1.0.1, etc.).

Extended signature policy

Chapter 8 proposes the new signed property named ExtSignaturePolicyIdentifier as

a reference to the extended signature policy to which the signer adheres when creating

the signature. However, and in the experimental implementation, we do not generate

XAdES-EPES signatures containing that new property. The reason is that IAIK, the

underlying cryptographic provider, does not obviously allow the addition of properties

not compliant to the standard when creating the signatures. Furthermore, and contrary

to other data (e.g. the signature policy reference, the commitment type, the signing

time, etc.), the ext-SP reference is a fixed value that we do not need to modify in

our test cases. Therefore, this limitation does not reduce the accuracy of the tests

results. Notwithstanding, it would be necessary to achieve a solution if a prototype of

the framework had to be developed in a future.

Commitment type

We include the optional xades:CommitmentTypeIndication signed property, as de-

fined in Section 7.2.6 of the XAdES standard. The type of commitment made by the

signer when producing the signature is indicated in an explicit manner by means of

an URI value. A number of commitments have already been identified in the standard

[75]:

• Proof of origin indicates that the signer recognizes to have created, approved

and sent the signed data object. The URI for this commitment is http://uri.

etsi.org/01903/v1.2.2#ProofOfOrigin.

• Proof of receipt indicates that signer recognizes to have received the content

of the signed data object. The URI for this commitment is http://uri.etsi.

org/01903/v1.2.2#ProofOfReceipt.

• Proof of delivery indicates that the Trusted Service Provider (TSP) providing

that indication has delivered a signed data object in a local store accessible to

the recipient of the signed data object. The URI for this commitment is http:

//uri.etsi.org/01903/v1.2.2#ProofOfDelivery.

192

http://jlopez.thesis.uc3m.es/SigPolicy/vXXX
http://uri.etsi.org/01903/v1.2.2#ProofOfOrigin
http://uri.etsi.org/01903/v1.2.2#ProofOfOrigin
http://uri.etsi.org/01903/v1.2.2#ProofOfReceipt
http://uri.etsi.org/01903/v1.2.2#ProofOfReceipt
http://uri.etsi.org/01903/v1.2.2#ProofOfDelivery
http://uri.etsi.org/01903/v1.2.2#ProofOfDelivery

10.3 Experimental Implementation

• Proof of sender indicates that the entity providing that indication has sent the

signed data object (but not necessarily created it). The URI for this commitment

is http://uri.etsi.org/01903/v1.2.2#ProofOfSender.

• Proof of approval indicates that the signer has approved the content of the

signed data object. The URI for this commitment is http://uri.etsi.org/

01903/v1.2.2#ProofOfApproval.

• Proof of creation indicates that the signer has created the signed data object

(but not necessarily approved, nor sent it). The URI for this commitment is

http://uri.etsi.org/01903/v1.2.2#ProofOfCreation.

Additionally, and for test purposes only, we have defined the next complementary

commitment types, with their corresponding (fictitious) URIs:

• Proof of storage, with the next value as the URI http://uri.etsi.org/

01903/v1.2.2#ProofOfStorage

• Proof of acknowledgment, with the next value as the URI http://uri.etsi.

org/01903/v1.2.2#ProofOfAcknowledgment

• Proof of review, with the next value as the URI http://uri.etsi.org/01903/

v1.2.2#ProofOfReview

• Proof of second review, with the next value as the URI http://uri.etsi.

org/01903/v1.2.2#ProofOfSecondReview

• Proof of third review, with the next value as the URI http://uri.etsi.org/

01903/v1.2.2#ProofOfThirdReview

• Proof of fourth review, with the next value as the URI http://uri.etsi.

org/01903/v1.2.2#ProofOfFourthReview

• First partial non-repudiation of origin, with the next value as the URI

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin1

• First partial non-repudiation of receipt, with the next value as the URI

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt1

• Second partial non-repudiation of origin, with the next value as the URI

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin2

• Second partial non-repudiation of receipt, with the next value as the URI

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt2

193

http://uri.etsi.org/01903/v1.2.2#ProofOfSender
http://uri.etsi.org/01903/v1.2.2#ProofOfApproval
http://uri.etsi.org/01903/v1.2.2#ProofOfApproval
http://uri.etsi.org/01903/v1.2.2#ProofOfCreation
http://uri.etsi.org/01903/v1.2.2#ProofOfStorage
http://uri.etsi.org/01903/v1.2.2#ProofOfStorage
http://uri.etsi.org/01903/v1.2.2#ProofOfAcknowledgment
http://uri.etsi.org/01903/v1.2.2#ProofOfAcknowledgment
http://uri.etsi.org/01903/v1.2.2#ProofOfReview
http://uri.etsi.org/01903/v1.2.2#ProofOfReview
http://uri.etsi.org/01903/v1.2.2#ProofOfSecondReview
http://uri.etsi.org/01903/v1.2.2#ProofOfSecondReview
http://uri.etsi.org/01903/v1.2.2#ProofOfThirdReview
http://uri.etsi.org/01903/v1.2.2#ProofOfThirdReview
http://uri.etsi.org/01903/v1.2.2#ProofOfFourthReview
http://uri.etsi.org/01903/v1.2.2#ProofOfFourthReview
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin1
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt1
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin2
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt2

10. EVALUATION

• Non-repudiation evidence, with the next value as the URI http://uri.etsi.

org/01903/v1.2.2#NonRepudiationEvidence

10.3.1.3 Set of signatures composition

According to Section 7.2.6, we restrict the format of the data to be signed to XML

(though it may contain external references such as DTD, XML schema, etc.), XML ele-

ments mixed with ASCII text, ASCII text content only and binary information. In this

last case, the information is encoded in Base64 format in order to avoid problems with

the parsing layers and intermediate entities, when transmitted through the network.

The Primary Signatures are collected in a detached form, so they are detached

from the data that is signed. As the XML Signature standard [233] does not impose

any requirement on how detached XML signatures have to be linked to the signed

data (e.g. collected in the same XML document along with the signed data, or in a

separate document), we compose an XML document with a root node named Root and

a child node named SignedData. The data to be signed is inserted in the document as

a child node of the SignedData node. Besides, each Primary Signature is included in

the document as a direct child of the root node. The CounterSignatures are included

as enveloped signatures of the corresponding countersigned signature. According to

the standard [75], the CounterSignature can be incorporated as an unsigned signature

property of the countersigned signature.

Thereby, we compose the set of signatures (SSi) that is used by the validation

algorithm as the XML document, containing both the signed data and the XAdES-

EPES signatures. Next, the XML schema of the SSi herein considered is indicated:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<xsd:element name="Root" type="ssiType"/>

<xsd:complexType name="ssiType">

<xsd:sequence>

<xsd:element name="SignedData" type="AnyType"/>

<xsd:sequence>

<xsd:element name="Signature" type="ds:SignatureType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AnyType" mixed="true">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

194

http://uri.etsi.org/01903/v1.2.2#NonRepudiationEvidence
http://uri.etsi.org/01903/v1.2.2#NonRepudiationEvidence

10.3 Experimental Implementation

<xsd:any namespace="##any" processContents="lax"/>

</xsd:sequence>

<xsd:anyAttribute namespace="##any"/>

</xsd:complexType>

</xsd:schema>

As can be seen in the schema, we use the AnyType schema data type, which is

defined in [75]. It has a content model that allows a sequence of arbitrary XML elements

that (mixed with text) is of unrestricted length. It also allows for text content only.

Additionally, an element of this data type can bear an unrestricted number of arbitrary

attributes.

It is worth to mention that other variants of composition, compliant with the stan-

dard as well, could be used:

• Enveloping signatures, where the Primary Signature is generated over the content

found within an Object element of the signature itself. Thus, the signed data

is a child element of the signature. In our particular case, and because several

signatures are supposed to be generated, using enveloping signatures would imply

the resultant SSi to be of significant greater size, as the content is replicated as

an embedded Object for each Primary Signature.

• Enveloped signatures, where the signature is generated over the XML content

that contains the signature as a child element. If multiple signature are to be

generated, then each signature must omit itself from its own calculations, but it

is also necessary to exclude the ongoing signatures from the calculations of the

previously generated signatures so that adding the current signature does not

break the previous signatures’ integrity.

• Detached countersignatures, where the CounterSignature is detached from the

signature it countersigns, instead of being a child element included as an unsigned

property.

• Combinations of the above.

Our decision for the composition of the set of signatures using detached Primary

Signatures and enveloped CounterSignatures lies in the fact that it is optimum respect-

ing the resultant length, the calculation of signatures is much easier than if complex

XPaths formulas have to be used (i.e. in enveloped signatures), and the whole infor-

mation is collected in an self-contained document (the SSi), easing verification tasks.

195

10. EVALUATION

10.3.2 Evaluation of the validation algorithm

This Section demonstrates the correctness of the validation algorithm proposed in the

framework for extended signature policies by summarizing the test cases executed and

the results obtained. This algorithm is the most complex and sensitive part of the

framework (see Section 8.2.2 and Appendix C, where the validation algorithm is ex-

plained in detail). The procedure explained in Section 8.2.1, where the generation of a

signature according to the extended policy is explained, has not been developed.

The validation of a signature against the requirements imposed in a simple sig-

nature policy has not been developed either. From a research viewpoint, the cost of

developing such functionality is not worth the added value provided to the experimental

implementation nor to the evaluation of the proposal contained in this thesis. As could

be seen in Chapter 8, the validation algorithm should validate each signature against

its signature policy either at the very beginning or as the very last step. Therefore,

at those points, the algorithm either has not started or has just finished the necessary

operations to discover if the tree represented by the Set of Signatures (SSi) satisfies at

least one tree represented by a Tree of Signatures (TSi) according to the extended pol-

icy. The unitary signature validation respecting its signature policy has to be obviously

carried out before ascertain the complete compliance, but it can be considered out of

the scope of the framework goal. As a result, in the experimental implementation we

suppose that each signature is compliant with the referenced signature policy.

The defined test cases check that the functional requirements of the validation algo-

rithm are met. In particular, each test case checks that the validation of a SSi against a

TSi defined under an extended electronic signature policy matches the expected result.

Several test cases have been defined in order to obtain a high assurance respecting

the correctness of the design and implementation of the algorithm. The total number

of test cases executed is 188, all of them fulfilling the expected results. Each

test case has been designed to meet a particular objective. The objective is mainly the

functionality that is desired to be tested (e.g. a pruning, correct backward processing,

correct dependences evaluation, deadlocks in different circumstances, etc.), besides ob-

viously checking that the specific case set out was correctly evaluated by the algorithm.

JUnit has been used as the Test Framework, and each test case executes the validation

algorithm with a SSi and a TSi as parameters.

The test bench used for the tests cases, and that consists of a set of TSis and a set

of SSis, is given in Appendix D. According to the specification given in Chapter 8, the

information used for each TSi node includes the node’s unique identifier, the node’s

signer identifier, the allowed commitment types, the acceptable signature policies, the

countersignatures (child nodes) and the timing and sequence dependences. The SSi

196

10.3 Experimental Implementation

consists of an XML document with the signed data and a collection of one or more

XAdES-EPES signatures, as explained in Section 10.3.1.3.

The types of TSis and SSis created and used as the test bench are summarized next.

Details of each TSi and SSi composition are given in Appendix D:

• TSis with one Primary Signature (see Table D.2).

• TSis with three Primary Signatures (see Table D.3).

• TSis with one Primary Signature and one CounterSignature each (see Table D.4).

• TSis with several levels of depth (see Table D.5).

• TSis specifically designed for OFEPSP+ protocol (see Table D.6).

• SSis with one Primary Signature (see Table D.7).

• SSis with three Primary Signatures (see Table D.8).

• SSis with several levels of depth (see Table D.9).

• SSis specifically designed for OFEPSP+ protocol (see Table D.10).

From the information above, test cases have been grouped according to the type of

SSi being analyzed. This SSi is further evaluated against a number of TSis:

• Test cases defined for SSis with one level of depth and one Primary Signatures

(see Table D.11).

• Test cases defined for SSis with one level of depth and three Primary Signatures

(see Table D.12).

• Test cases defined for SSis with several levels of depth (see Table D.13).

• Test cases specifically defined for OFEPSP+ protocol (see Table D.14).

The details of each test case are also given in Appendix D, providing specific infor-

mation regarding the SSi and TSi used, the result obtained after the execution of the

test case, and a brief description of the cause or reason in case the SSi does not satisfy

the TSi.

197

10. EVALUATION

10.3.3 OFEPSP+ simulation

A simulator for OFEPSP+ has been developed in order to verify the executability

and feasibility of the protocol, including the main protocol and the abort and recovery

subprotocols. The simulator also uses the implementation of the validation algorithm

to check the validity of the SSi generated after a protocol run against the requirements

imposed in a TSi specifically defined for OFEPSP+.

Four independent Java applications have been implemented, simulating the behavior

of each participant in a protocol run. Each participant (origin, receiver, TTP) has

been represented by one application, except the origin, that has been split into two

applications, one for each of the environments used.

During an OFEPSP+ run, the simulator automatically executes the steps that the

origin, receiver and TTP have to follow in order to complete the protocol execution

in accordance with its specification and the restrictions and format established in the

experimental implementation. Partial evidence is generated in each step, until an

extended signature policy compliant SSi is generated. Depending on the step being

executed, the signature is generated as a primary signature (PNRO1, PNRR1) or as

an embedded countersignature (PNRO2, PNRR2, NRE, NRETTP).

The Java applications for the receiver and the TTP implement a server socket that

listens in a specific IP address and port and accepts requests coming from origins or

origins/receiver, respectively. On the other hand, the Java applications for environ-

ments E1 and E2 of the origin implement a client socket to connect to the receiver for

the protocol execution. Additionally, environment E1 is capable of connecting to the

TTP in case the abort subprotocol had to be executed, and configured at application

level with a timeout option. The receiver application also implements a client socket to

communicate with the TTP in case the recovery subprotocol had to be executed, and

configured with a timeout option as well.

Next three scenarios have been simulated:

• An OFEPSP+ execution where origin and receiver communicate with each other

in a normal way, without interacting with the TTP.

• An OFEPSP+ execution where we simulate a malicious behavior from the re-

ceiver’s side. In this case, the receiver does not send PNRR2 to E1, but executes

the recovery subprotocol in order to obtain NRETTP from the TTP. As the ori-

gin does not receive PNRR2, he invokes the abort subprotocol from E1. Because

the receiver executed the recovery subprotocol first, the origin obtains NRETTP

from the TTP.

198

10.4 OFEPSP+ Formal Validation

• An OFEPSP+ execution where we simulate a network communication error that

forces the subprotocols to be executed. In particular, the receiver sends PNRR2

to E1, but we simulate a message loss, forcing the origin to abort the protocol

from E1. Afterwards, and because the receiver does not receive NRE, he executes

the recovery subprotocol, obtaining the abort token from the TTP.

10.4 OFEPSP+ Formal Validation

Formal validation of security protocols is of utmost importance before they gain mar-

ket or academic acceptance. Some standard and widely used security protocols for

the Internet have been proved to suffer from critical design flaws that an attacker can

exploit to subvert their security. The reason is that their security goals were merely in-

formally evaluated, obviating potential attack paths. Automated reasoning techniques

are commonly used to evaluate the protocols in a formal way, increasing the assurance

respecting the purported security. In this sense, the Automated Validation of Internet

Security Protocols and Applications (AVISPA) [15] and the Security Protocol ANi-

mator for AVISPA (SPAN) [85] tools have been used to validate the correctness and

safety of the improved Optimistic Fair Exchange Protocol based on Signature Policies

(OFEPSP+) proposed in Chapter 9.

AVISPA [13, 15] provides a suite of applications for building and analyzing for-

mal models of security protocols. AVISPA incorporates four backends: the On-the-

Fly Model-Checker (OFMC) [25], the Constraint-Logic-based model-checker (CL-AtSe)

[228], the SAT-based Model-Checker (SATMC) [14], and the Tree Automata based Au-

tomatic Approximations for the Analysis of Security Protocols (TA4SP) [37]. These

modules implement different automated reasoning techniques to formally analyze the

protocol specification. On the other hand, SPAN [85] offers a graphical user interface

that allows the protocol designer to easily interact with AVISPA capabilities.

Protocol models must be written in the High Level Protocol Specification Language

(HLPSL) [16, 49], which allows the protocol designer to describe the security protocol

and specify its intended security properties. HLPSL details for OFEPSP+ can be found

in Appendix G.

AVISPA adopts the standard intruder model of Dolev and Yao (DY model) [66], in

which the intruder has complete control over the network but cannot break cryptogra-

phy. The intruder may intercept, analyze, and/or modify messages (as far as he knows

the required keys), and send any message he composes to whoever he pleases, posing

as any other agent. The goal of OFEPSP+ validation was to check the correctness and

safety of the protocol respecting DY model.

199

10. EVALUATION

The validation methodology followed can be summarized in the next 3 steps, which

are covered in subsequent Sections:

1. OFEPSP+ specification in HLPSL.

2. HLPSL correctness verification.

3. OFEPSP+ security validation.

Due to some limitations found in the backend analyzers, further explained, we could

not formally validate fairness as a security goal of the protocol. For that reason, Section

10.4.4 includes an informal analysis of the security of OFEPSP+ regarding the fairness

property.

10.4.1 OFEPSP+ specification in HLPSL

OFEPSP+ complexity lies in the existence of four entities. The first two entities, E1

and E2, are managed by the origin of the protocol, but, in HLPSL, had to be considered

as two different roles played by a different agent each, named e1 and e2 respectively.

In any case, the knowledge sharing permitted by HLSP, and the fact that both entities

actually correspond to physically separated environments, make the protocol modeling

accurate respecting a real scenario. The other two entities, R (the receiver) and the

TTP (Trusted Third Party), were modeled as the receiver and server roles, respectively,

played by the corresponding agents.

Each role implemented its own state transition system according to the steps in-

dicated in the protocol described in Sections 9.1.3, 9.1.4 and 9.1.5. Thanks to the set

structure available in HLPSL, the TTP’s evidence database could be modeled and the

TTP behavior approached.

It should be remarked that, for simplicity purposes, the HLPSL specification of

the protocol assumes the binding by procedure, and not the environment attestation

technique applied in Chapter 9.

10.4.1.1 Restrictions applied

The protocol steps described in Sections 9.1.3, 9.1.4 and 9.1.5 could be modeled, except

next four issues.

Signature policy-based design

OFEPSP+ fairness property is enforced by the signature policy-based design, assuring

that partial evidence does not tie down any of the parties involved. The existence

of NRE or NRETTP is imperative to make the commitment made by both parties

200

10.4 OFEPSP+ Formal Validation

binding, and its creation (by the origin or the TTP) must fulfill the policies constraints

and requirements. We found that the usage of signature policies could not be modeled

in HLPSL. HLPSL allows translating an Alice & Bob chart into a more detailed and

expressive language. However, not every protocol behavior can be mapped in HLPSL.

Therefore, the protocol steps related to a policy retrieval were discarded during the

HLPSL definition.

Time-stamping

Time-stamps can be used in the protocol as a time reference to permit the parties

to decide when the recovery or abort subprotocols have to be executed. However,

HLPSL only allows the establishment of a generic timeout as an incoming message to a

role. This feature avoided us to model specific timeouts, and thus, the time-stamping

processes were obviated. We have checked that this constraint has not modified neither

the protocol behavior nor its security goals fulfillment.

Template usage

In OFEPSP+ the origin must create the message m according to the template con-

straints. This measure restricts the semantics of the signed information, counteracting

certain attacks. However, and as previously mentioned, this validation is intended

to evaluate the security measures against DY model. For that reason, the template

retrieval by the origin in the first step of the main protocol was discarded as well.

Server role capabilities

Finally, the server role (the TTP) was initially too complex for the backend analyzers of

AVISPA, due to the number of transition combinations considered during the validation

process. Note that our TTP is designed as an e-notary, storing and managing the

evidences generated during a protocol run in which the TTP takes part. Besides, there

were three situations where the TTP could intervene: an abort requested by either

e1 or e2, and a recovery requested by the receiver. This led to a huge role definition

with 9 transitions. Taking into account that CL-AtSe considers, by default, that each

transition can be applied at most 3 times, the backend had to manage 27 possible

transitions during the analysis. It seemed to be too complex.

For that reason, we simplified the role server, excluding e2 from making abort

requests. The origin is still able to abort the protocol by using e1. Thus, the server

role was modeled considering next three states: 0 as the initial state; 1 as the state

when an abort has been done first; and 2 as the state when a recovery has been done

201

10. EVALUATION

first. In each state, the server can receive both abort and recovery requests, leading to

6 defined transitions.

As a result of previous modifications applied, the server role cannot respond to

several parallel sessions. The transitions are sequential, that is, once a transaction has

been aborted or recovered, the server will stay in that state (1 or 2, respectively) for

the rest of requests, no matter if they come from another session. Nonetheless, and as

will be seen further, we were able to test the protocol with parallel sessions between e1

and e2 and receiver, looking for possible attacks though the server behaved in this way.

We know that we have limited the possible space of attacks, but the decision was

made in order to allow the backends to correctly analyze the protocol.

10.4.1.2 Analysis scenarios

HLPSL must cover the definition of two special roles: session and environment. Re-

specting the session role, we just instantiated the roles e1, e2, and receiver with the

adequate information. Mention that the agents e1 and e2, since both are managed by

the same origin, own a pre-shared knowledge: the message to be sent. The template

reference is also a pre-shared knowledge between e1, e2 and the receiver agents.

One of the most important parts of the HLPSL is the initial knowledge allocated

to the intruder. In this sense, and for test purposes, we defined five different template

references (tpl id, tpl id2, tpl id3, tpl id4) and four different messages (msg, msg2,

msg3, msg4), assigning the subset {msg2, msg3, tpl id2, tpl id3, tpl id4} as knowledge

to the intruder.

Afterwards, we defined several analysis scenarios with different sessions configura-

tions (see Section 10.4.3 for details). Due to the constraints applied to the server role

capabilities commented above, we instantiated just one server role in each scenario.

Security goals

AVISPA supports three types of goals so far: secrecy of, (strong) authentication on and

weak authentication on. In the latter, the piece of data used to authenticate the agent

can be reused by an attacker, so reply attacks are not considered by the analyzers. As

AVISPA does not explicitly support fairness and non-repudiation security goals, some

fair exchange/non-repudiation protocols modeled with AVISPA used secrecy of goal to

achieve it. However, OFEPSP+ does not provide confidentiality on any item. Fairness

is achieved by means of the signature policies fulfillment. Therefore, currently we have

only modeled authentication goal respecting the exchanged evidences.

202

10.4 OFEPSP+ Formal Validation

10.4.2 HLPSL correctness verification

In this step, the aim was twofold: verify the syntactic/semantic correctness and exe-

cutability of the HLPSL specification; and that the HLPSL specification implemented

the intended protocol behavior. For the syntactic, semantic and executability verifica-

tion, next AVISPA and SPAN tools were used:

HLPSL2IF : This tool translates the HLPSL specification into the Intermediate

Format (IF). A successful translation implies that the syntax of the protocol is correct.

OFEPSP+ HLPSL file was correctly translated into the corresponding IF.

Protocol simulation: By simulating the protocol with SPAN, the semantic of the

protocol’s HLPSL is verified and a Message Sequence Chart (MSC) visualized. In our

case, the semantic was correctly verified but the MSC could not be shown. It frequently

happens when the transition labels and state values are not perfectly set. In any case,

it does not imply an error in the specification.

OFMC search tree option: OFMC offers the possibility to browse the search tree

through a path indicated by the indexes of the successors to follow. As a result, one

can decide which choice point take in a specific point of the search tree deduced from

the IF. This option allows the tester to check if every transition can be taken during a

protocol run. In our case, every transition could be chosen at some time in the search

tree.

CL-AtSe no executability option: CL-AtSe offers the possibility of tracing the proto-

col specification without being analyzed. The output shows the so called Initial System

State, representing both the intruder and honest participant’s states in CL-AtSe just

after reading and interpreting the IF file. While the intruder state is just represented

by a list of knowledges, the honest participants are described by a set of instantiated

roles, called Interpreted protocol specification. This option is useful to check that CL-

AtSe interprets the protocol transitions as expected. Each role consists in a tree where

unary nodes are protocol steps and n-ary nodes are choice points. In our case, each

possible transition was represented in the tree.

SATMC check only executability : With this option, SATMC checks on executability

of actions/rules without any intruder, allowing the tester to debug the specification.

The output trace showed that every rule could be executed.

Session compilation with OFMC : With session compilation (sessco), OFMC finds

a replay attack even without a second parallel session. It first simulates a run of the

whole system and in a second run, it lets the intruder take advantage of the knowledge

learned in the first run. Sessco is also handy for a quick check of executability. How-

ever, as stated in AVISPA documentation, if one role can loop (i.e. remain in the same

203

10. EVALUATION

control state forever and make infinitely many steps), sessco is not possible, and OFMC

aborts with an error message. That is our case in some transitions of role server, and

thus, we could not use this option.

CL-AtSe no executability option and OFMC search tree option helped us also to

ascertain that the HLPSL specification matched the intended protocol behavior.

10.4.3 OFEPSP+ security validation

The results obtained from validating OFEPSP+ with OFMC and CL-AtSe backends

are summarized in next Tables 10.3, 10.4 and 10.5. In case of SATMC, the result was

always “Inconclusive”. Tests reports showed us that SATMC did not find an attack,

but it warned that, with SATMC backend, intruder is not allowed to generate fresh

terms (i.e. e1 role). As a consequence, attacks based on such an ability would not

be reported. TA4SP was not used because it does not support sets up to now. The

analysis scenarios referred in these Tables are described in Table 10.61.

Analysis scenario OFMC CL-AtSe

cfg1 SAFE SAFE

cfg2 SAFE SAFE

cfg3 SAFE SAFE

cfg4 SAFE SAFE

Table 10.3: Validation results with OFMC and CL-AtSe respecting a single session with
legitimate agents and single sessions with intruder playing the role of a legitimate agent

Configurations applied in Table 10.3 were aimed at finding attacks in a normal

session (cfg1) or sessions where the intruder impersonates one of the legitimate agents

- E1 (cfg2), E2 (cfg3) or Receiver (cfg4).

Analysis scenario OFMC CL-AtSe

cfg5 SAFE SAFE(*)

cfg6 SAFE SAFE

cfg7 SAFE SAFE

cfg8 SAFE SAFE

Table 10.4: Validation results with OFMC and CL-AtSe respecting parallel sessions with
legitimate agents playing different roles

1Intruder is denoted as ’i’. We did not instantiated any session with the intruder playing the role

of the server because we consider the TTP to be honest.

204

10.4 OFEPSP+ Formal Validation

Analysis scenario OFMC CL-AtSe

cfg9 SAFE(*) SAFE

cfg10 SAFE(*) SAFE

cfg11 SAFE(*) SAFE

cfg12 SAFE SAFE

cfg13 SAFE SAFE

cfg14 SAFE SAFE

Table 10.5: Validation results with OFMC and CL-AtSe respecting parallel sessions with
intruder playing as legitimate agent(s)

Configurations shown in Table 10.41 were focused on violating the security goals

when two coherent parallel sessions are executed (cfg5) and when a legitimate party is

playing a role for which is not intended to in case of parallel sessions (cfg6, cfg7 and

cfg8). The difference between these two types of scenarios lies in that, in the latter,

a legitimate agent poses as a different one. For instance, in one session, each agent is

playing the corresponding role, while in the second session, the origin’s environments

play the role of the other environment (cfg8). The backend analyzer uses the informa-

tion simultaneously generated in both session to mix the messages between the sessions

and see if an attack on the security goals can be executed. We realized that each par-

ticipant’s identifier had to be included in each evidence generated in order to avoid this

sort of attack. In particular, we used the public keys of E1, E2, Receiver, and TTP.

Table 10.52 contains the set of configurations where an intruder is playing the role

of legitimate agent(s) when two parallel sessions are executed. Note that the knowledge

own by the intruder in each configuration differs. The aim was to find possible security

goals violations in a session when carried out from an intruder running in another

different session. Mention that when the intruder plays a legitimate role in a session,

the goals involving him are not considered by AVISPA (otherwise, he could always

achieve an attack).

Based on the results obtained from the tests, our protocol fulfills the security goals

G2 - Message authentication (includes message integrity), G17 - Accountability, G18

- Proof of Origin and G19 - Proof of Delivery for partial evidence PNRO1, PNRR1,

PNRO2, PNRR2, and valid evidence NRE and NRETTP . The description of goals

can be found in Deliverable 6.1 “List of selected problems” in AVISPA project [15].

Due to our protocol design, evidences are not protected against reply attacks (G3),

and thus goal Entity Authentication (G1) is not achieved either. For that reason,

1OFMC executed with maximum search depth of 17. CL-AtSe executed with -nb 1 option (maxi-

mum 1 loop iteration in any trace) for test marked with (*)
2Results marked with (*) mean that OFMC was launched with maximum search depth of 17

205

10. EVALUATION

Analysis scenario sessions configuration

cfg1 session (e1, e2, r, s, ..., msg, tpl id)

cfg2 session (i, e2, r, s, ..., msg, tpl id)

cfg3 session (e1, i, r, s, ...,msg, tpl id)

cfg4 session (e1, e2, i, s, ..., msg, tpl id)

cfg5 session (e1, e2, r, s, ..., msg, tpl id)
session (e1, e2, r, s, ..., msg, tpl id)

cfg6 session (e1, e2, r, s, . . . , msg, tpl id)
session (r, e1, e2, s, . . . , msg, tpl id)

cfg7 session (e1, e2, r, s, . . . , msg, tpl id)
session (e1, r, e2, s, . . . , msg, tpl id)

cfg8 session (e1, e2, r, s, . . . , msg, tpl id)
session (e2, e1, r, s, . . . , msg, tpl id)

cfg9 session (e1, e2, r, s, . . . , msg, tpl id)
session (i, e2, r, s, . . . , msg, tpl id)

cfg10 session (e1, e2, r, s, . . . , msg, tpl id)
session (e1, i, r, s, . . . ,msg3, tpl id3)

cfg11 session (e1, e2, r, s, . . . , msg, tpl id)
session (e1, e2, i, s, . . . , msg4, tpl id4)

cfg12 session (i, e2, r, s, . . . , msg2, tpl id2)
session (e1, i, r, s, . . . ,msg3, tpl id3)

cfg13 session (i, e2, r, s, . . . , msg2, tpl id2)
session (e1, e2, i, s, . . . , msg3, tpl id3)

cfg14 session (e1, i, r, s, . . . ,msg, tpl id)
session (e1, e2, i, s, . . . , msg, tpl id)

Table 10.6: Analysis scenario configurations for the tests

only weak authentication on goal was assigned. We think that including a nonce in

the requests generated by the receiver would enforce goals G1 and G3 for PNRO2,

PNRR2, NRE and NRETTP . However, tests conducted including that nonce did not

reach a conclusion, maybe due to the huge number of transitions the backends had to

analyze. As a result, our assumption could not be formally proved.

10.4.4 Informal analysis of fairness property

This Section intends to fill the gap left by the formal validation regarding the analysis

of OFEPSP+ fairness security goal. For that purpose, we perform an informal analysis

of the security of OFEPSP+, focusing on the expected fairness property of the protocol.

In our analysis, the goal of the attacker is to obtain a valid evidence from the other

206

10.4 OFEPSP+ Formal Validation

side without making any commitment in the transaction. The achievement of this

goal would imply that the fairness of the protocol has been broken. There are mainly

four possible attacks, which are based on protocol interruptions. This kind of attack

consists of aborting the protocol in a chosen step. It should be noted that sometimes

a communication or system error can cause the same effect:

• Main protocol interruption after PNRO1 reception. The receiver stops the pro-

tocol just after step (3), causing the origin not obtaining any evidence from the

receiver. However, due to the conditions established in the extended electronic

signature policy, that dictate that only a set of signatures complying with NRE

or NRETTP composition are the valid evidence, the receiver could not make use

of PNRO1 as a valid one.

• Main protocol interruption after PNRR1 reception. The origin stops the protocol

just after step (5) and after having received the PNRR1. Therefore, the receiver

possesses the PNRO1 and the origin the PNRR1. For the same reason as before,

this evidence cannot be considered as complete.

• Main protocol interruption after PNRO2 reception. The receiver stops the proto-

col just after step (7), and after having received the PNRO2. Again, this evidence

cannot be considered as complete. But, in this case, the receiver can generate

PNRR2 and execute the recovery subprotocol. If the origin has not aborted the

protocol before, the receiver will obtain NRETTP from the TTP. However, the

origin is expected to abort the protocol at some time, obtaining the NRETTP as

well.

• Main protocol interruption after PNRR2 reception. The origin stops the protocol

just after step (8), and after having received the PNRR2. In this case, the

origin is capable of producing valid evidence NRE. If the origin aborts the

protocol immediately after step (8), the receiver will not be able to obtain valid

evidence from the TTP, while the origin did. This situation is unfair to the

receiver. However, and as discussed in Section 9.1.6, the origin’s misbehavior

would be uncovered during a further dispute resolution. As a result, though this

situation is unfair to the receiver at first instance, it is finally detrimental to the

malicious origin. It should be remarked that, if the origin aborts the protocol

before receiving PNRR2, he will not be able to compose valid evidence, as the

participation of the receiver is needed.

As can be observed, every potential attack is counteracted. As a result, we can

conclude that fairness is guaranteed in OFEPSP+.

207

10. EVALUATION

10.5 Chapter Summary

This Chapter has presented the suite of evaluations performed to prove the improve-

ments, correctness, feasibility and security of the main contributions made in this thesis.

The taxonomy has been evaluated against the set of general requirements for tax-

onomies, showing that our taxonomy complies with most of them. Notwithstanding,

our taxonomy requires expert security knowledge for its understanding and application,

and therefore it does not comply with the comprehensible requirement. In addition,

we do not guarantee a deterministic classification of attacks, since we consider that it

is not possible in this inexact field of study. In this sense, the proposed method of

classification intends to reduce the ambiguity during the classification procedure, but

the final result will strongly depend on the training, skills and perspective of the user

in charge of the classification and the available information of the attack.

The evaluation has also covered the analysis of the enhancement of the reliability

of digital signature-based evidence achieved by the thesis proposal. Formal proofs

have been given, and demonstrate that the division of the signature environment is an

effective approach that can substantially decrease the probability of a successful attack.

Contrary to other proposals, the division principle does not rely on the existence of a

trusted terminal or device. Moreover, the number of environments can be balanced

depending on the required degree of reliability to achieve. Though from a theoretical

perspective, our paradigm is the only one that permits achieving perfect security in the

sense that the probability of a successful attack can be reduced to zero.

In addition, the theoretical analysis has been extended to evaluate the improve-

ment achieved by our thesis proposal respecting each attack method identified in the

taxonomy. The results demonstrate that our proposal improves current state-of-the-art

while considering a holistic threat model.

An experimental implementation of the validation algorithm of the extended elec-

tronic signature policy framework and a simulator for OFEPSP+ have been developed

in order to prove the correctness of the design and the feasibility for a practical imple-

mentation. This implementation has also served to prove the feasibility of the division

paradigm, as it has been virtually applied in the simulator to the origin of OFEPSP+

protocol.

Finally, automated reasoning techniques have been used by means of AVISPA and

SPAN tools in order to formally verify the security of OFEPSP+, taking the intruder

model of Dolev and Yao as the reference threat model. The results of the security

analysis show that our protocol assures authentication and integrity security goals.

Due to the limitation found in the tools, the formal validation has been complemented

with an successful informal analysis of OFEPSP+ fairness property.

208

Chapter 11

Conclusions and Future Work

This Chapter contains the thesis conclusions and final remarks, and summarizes the

contributions achieved. Additionally, future research directions that derive from the

thesis results are proposed.

11.1 Conclusions

The research undertaken in this thesis has been focused, in the first instance, on the

study and formalization of the security threats that may subvert the reliability of digital

signature-based evidence, and, in the second instance, on devising a new proposal

that better counteracted those threats. The pursued final goal was to significantly

enhance the reliability of digital signatures, enforcing their non-repudiation property

when acting as evidence.

The reliability of a digital signature should determine its capability to be used

as valid evidence. In this sense, this thesis contributes to obtain higher assurance

respecting the actions or events occurred in electronic transactions, and attested by

digital evidence. The same applies when digital signatures are used as instrument of

evidence, like in e-commerce or transactions where digital signatures play an important

role, and have legal effectiveness. A party will always be able to (try to) repudiate the

commitment made in a signed document or the action or event attributed in a certain

transaction. However, with our proposal, the judge or the party in charge of resolving

the dispute will possess a more reliable evidence, being capable to make an informed

decision that will be surely closer to what actually happened.

In addition, contrary to what stakeholders and legislators expected, digital signa-

tures have not spread as fast as desired. Apart from economical and political reasons,

studied by Berta in [26], the most critical influential factor is the lack of trust in tech-

nology, specially when one’s interests and money are put in place.

209

11. CONCLUSIONS AND FUTURE WORK

A well known definition of the concept of trust, adjusted to the case of two parties

involved in a transaction, is that an entity A is considered to trust another entity B

when entity A believes that entity B will behave exactly as expected and required. The

same applies between the relationship established between end users and technology.

Trust in the information society is built from several circumstances, like calculus, knowl-

edge, social reasons or experience [151]. As a result, being aware of existent security

threats, having suffered bad experiences when using technology or just being reluctant

to use technology because of a feeling of lack of control regarding what is actually hap-

pening will inevitably damage the trust in technology. Consequently, we consider that

the contributions of this thesis will help increasing the users’ confidence and trust in

electronic transactions, once the control of their own information and actions is clearly

strengthened.

Next, the specific contributions achieved in the thesis are listed, along with the

scientific papers published and patents filed.

• Formal and holistic study of the security threats on digital signatures [97, 99]

A taxonomy of attacks has been devised in Chapter 6, and which categorizes

the attacks that can be carried out on the digital signature creation and verifica-

tion stages. A method for the systematic classification of attacks has also been

provided, establishing the steps that must be followed to classify an attack under

the dimensions of the taxonomy.

The taxonomy has been successfully evaluated (Section 10.1), and a comprehen-

sive survey and classification of attacks using our taxonomy has also been

performed (Appendix B). The survey proves to some extent that current tech-

nology is not capable of counteracting existent security threats, and thus fails to

offer a resilient solution for digital signatures.

• Proposal to enhance the reliability of digital signature-based evidence [93, 96,

100, 101]

The proposal consists of two main pillars: the signature environment division

paradigm, formalized in a technology-independent approach in Chapter 7, and

the extended electronic signature policy, defined in Chapter 8.

The formal proofs that demonstrate the benefits of the environment division

and the improvement against the current state of the art have been given in

Section 10.2. Also, the security mechanisms for the generation and verification of

digital signature-based evidence have been detailed. These mechanisms include

two different schemes: the chaining mode scheme and the independent mode

scheme. The first scheme is recommended when the order of the environments

210

11.1 Conclusions

being used is important, while in the second one the generation and verification

processes does not need to follow a certain order.

Another important issue regarding the implementation of the division principle

is the binding between the environment and the signature creation data. This

aspect has also been studied in Chapter 7, proposing two different approaches to

resolve it: binding by procedure and binding by environment attestation. It is

also worth mentioning the remark given in this Chapter respecting the format of

the data to be signed. We concluded that it cannot be guaranteed the integrity of

the semantic of some data if a complex or rich format is used. This is important

since the format of the potential data to be signed should be restricted to static

file formats in order to counteract certain threats identified in the taxonomy.

On the other hand, the extended signature policy has been formally described

in ASN.1 and XML, along with the generation and validation procedures. This

policy supports the definition of the dependences and relationships among the

signatures generated in the same transaction. As a result, the policy permits the

practical implementation of the division paradigm, stipulating the signatures that

are required to satisfy the evidence validity.

The pseudo-code of the tree matching and validation algorithm has also been

provided in Appendix C, while the details of the implementation and evaluation

of the validation process have been included in Section 10.3.

The security of the division paradigm supported by the extended signature poli-

cies has been evaluated in Section 10.2 against the categories of attacks identified

in the taxonomy, analyzing to what extent our proposal is resilient against such

threats. The results demonstrate that our proposal substantially improves the

current state of the art. However, we know that (practical) perfect security does

not exist, and thus realistic research efforts must be oriented to enhance the

security of current systems to a greater or lesser extent.

• An optimistic fair exchange protocol based on the signature environment division

paradigm and extended signature policies [94, 95, 96, 98]

The thesis proposal has been put into practice with the design and implementa-

tion of a practical use case. In particular, a new fair exchange protocol has

been proposed in Chapter 9 using a design based on two environments and an

extended electronic signature policy, which ASN.1 definition has been included

in Appendix F. Implementation guidelines, like the architecture for the signa-

ture policies management, assumptions on the communication channels or the

electronic signature formats to use have also been explained. In addition, the

211

11. CONCLUSIONS AND FUTURE WORK

protocol steps have been generalized to permit the incorporation of as many en-

vironments as desired.

The security of the protocol has been formally validated using automated reason-

ing technique tools. Due to the limitations of the formal validation, a complemen-

tary informal validation of the fairness property has been performed. Appendix

G contains the protocol specification used for the analysis, in High-Level Protocol

Specification Language, while the results of the analysis itself have been given in

Section 10.4.

Finally, the protocol has been implemented and tested in a simulation (see Section

10.3).

11.2 Future Work

The contributions achieved and the evaluations performed on the thesis results are

promising, and confirm that we have improved the current state of the art. However,

some work must still be done to complete a working prototype and fill some needs

identified herein. In addition, future research directions arise, and which investigation

would be of high interest. These issues are commented next:

• Formalize an attack model proposal that could be integrated in the taxonomy

An attack model is used to define how attacks are performed. Modeling attacks

is useful to design appropriate countermeasures to mitigate them, that is, reduce

the probability of occurrence of an attack by eliminating the vulnerabilities ex-

ploited. On the other hand, a taxonomy of attacks is intended to permit the

classification of attacks for its further understanding, and thus design effective

countermeasures.

Integrating an attack modeling phase during the classification of an attack would

significantly increase the accuracy of the attack behavior, and consequently the

classification itself. The user would model the attack, decomposing the attack

behavior into its atomic subattacks. Afterwards, the user would use the taxonomy

to classify the attack taking into account the detailed information of the model.

However, the modeling phase is complex on its own. In addition, blended attacks

are not easily classifiable under current taxonomies. As the attack modeling

strongly depends on the information available of the attack, an attack modeled

for its later classification could make a deterministic classification even more

difficult. If two models of the same attack differ, then the classification result will

inevitably differ as well.

212

11.2 Future Work

To minimize this risk, it would be advisable to develop a detailed set of modeling

instructions in a manner that the user of the taxonomy is guided through a well-

defined and constrained path. The instructions should be capable of establishing

in a clear manner what implies each level of abstraction in the model, how the

attack or subattacks are decomposed into more refined processes and what infor-

mation of each resultant subattack is used for the identification of the categories

of each dimension.

• Integrate security metrics for the adjustment of the number of environments

The signature environment division paradigm explained in Chapter 7 relies on

the lower probability of a successful attack (PSA) achieved when more than one

signature environment is used. This PSA is the result of the PSAs of each en-

vironment. Though some concrete examples have been described, these PSAs

are taken as abstract figures which actual value do not care for the rationale, as

the resultant combined probability is always lower independently of each single

value. However, having concise information about such probabilities would allow

making better decisions when choosing the environments. For instance, if one

knew the actual lowest PSA among different environments, then the correspond-

ing environment should be selected in a homogeneous set of environments.

In our opinion, calculating the exact PSA is a very difficult task, specially when

the environment to measure is under the control of a domestic end user. However,

there are some research areas which objective is precisely to devise ways to mea-

sure security related factors and thus permit affected parties to react accordingly.

As commented by Jansen in [125], information security metrics are an important

factor in making sound decisions about various aspects of security, offering a

quantitative and objective basis for security assurance. Measurements provide

single-point-in-time views of specific, discrete factors, while metrics are derived

by comparing to a predetermined baseline two or more measurements taken over

time [182].

Next, a good definition extracted from [222], and that illustrates how security

metrics and measurements can be used to estimate the PSA of certain environ-

ment, is given:

“At a high-level, metrics are quantifiable measurements of some aspect of a sys-

tem or enterprise. For an entity (system, product, or other) for which security is

a meaningful concept, there are some identifiable attributes that collectively char-

acterize the security of that entity. Further, a security metric (or combination of

213

11. CONCLUSIONS AND FUTURE WORK

security metrics) is a quantitative measure of how much of that attribute the entity

possesses. A security metric can be built from lower-level physical measures”.

Standardized security evaluation methodologies, like Common Criteria [54], re-

viewed in Chapter 5, are an example of qualitative measures used by an eval-

uator to estimate the security of a product or system. However, and due to

the inevitable subjectivity involved, these measures are usually non-repeatable

by other evaluators. Moreover, obtaining objective quantitative measures from

which calculating the PSA of certain environment may be even more difficult,

since measurements of software properties in general has been difficult to accom-

plish [125].

In [125], the author provides a list of possible research areas in security metrics

and measurements. The division paradigm proposed in this thesis can benefit

from the achievements of these challenging research efforts.

• Detail the environment attestation technique

Chapter 7 explained how the division paradigm could be implemented, including

the evidence generation and verification schemes and two proposals to bind each

environment from which evidence is generated with the corresponding signature

creation data. With this respect, the environment attestation technique was the

proposal that permitted a better way of performing such binding. However, the

information provided merely outlined how this proposal could be implemented.

We see that it is necessary to go into the environment attestation in depth. In

our opinion, the elaboration of an approach based on Trusted Platform Module

(TPM) or Mobile Trusted Module (MTM) would be the next step in the imple-

mentation specifications.

• Support for multiple signed data

Current extended electronic signature policy assumes that every primary signa-

ture is generated on the same piece of information. The result led to a tree graph

definition where the root node was considered as the signed data while the first

level of nodes were the primary signatures, either parallel or sequential. The fair

exchange protocol designed complies with this assumption as the origin and re-

ceiver generate their corresponding first partial evidence on the same information,

that is, the message sent by the origin to the receiver.

However, a transaction may imply that more than one message, each of which to

be attested by digital evidence, is exchanged between the parties involved. In this

case, and taking into account the extended policy definition, a different extended

214

11.2 Future Work

policy would have to be used for each message exchanged, and where each policy

established the rules for the signatures to be generated and verified respecting the

corresponding message. This would make that the link between the signatures,

when defined in different policies, was lost.

We think that it would be interesting to evolve the extended policy definition to

support signatures over multiple data that belonged to the same transaction. For

instance, an identifier could be added to each tree of signatures defined in the

tree of solutions of the extended policy. Trees with the same identifier would be

conceptually bound to the same piece of information. One tree of signatures with

each different identifier should have to be fulfilled in order to make the transaction

effective.

It would still be needed to restrict the particular message, among all messages of

the transaction, on which certain set of signatures can be generated, as well as

defining the acceptable combinations between trees with different identifiers, and

the relationships between signatures that belong to different trees. For example,

let’s assume a fair exchange protocol where two trees of signatures, with a different

identifier each, must be fulfilled. One tree over the message sent by the origin

and another tree over the receipt sent by the receiver. Let’s also assume that

there are recovery and abort subprotocols associated to both the message and

the receipt. It would not be coherent if the tree of signatures that represents the

recovery subprotocol of the message was fulfilled at the same time as the tree

bound to the abort subprotocol of the receipt. Likewise, it may be required that

the signatures corresponding to the abort subprotocol of the origin’s message are

generated at a time before those corresponding to the abort subprotocol of the

receipt.

• Support dynamic establishment of absolute timing and sequence dependence

Absolute timing and sequence constraints for some signature is currently defined

in the extended policy by setting the actual dates for the time period. However,

it is possibly not practical as the policy issuer may not know, a priori, at what

time each signature will be produced.

We think that the procedures defined in Chapter 8 should be enhanced in order to

permit the dynamic establishment of any time period of the absolute timing and

sequence dependences represented in the policy. This approach has the drawback

of requiring that the policy is issued for each transaction, possibly affecting the

performance. It would be advisable to research other alternatives.

215

11. CONCLUSIONS AND FUTURE WORK

• Implement graphical tools

Several parts of the proposal imply complex processes which completion would

be facilitated if graphical tools were used. For example, the visualization of

tree information during the generation and validation of multi signature-based

evidence according to an extended signature policy. In particular, in the second

step during the signature generation process (policy information visualization and

pre-processing, see Section 8.2.1) the signer has to evaluate the extended signature

policy information and the partial set of signatures, if available. This information

should be shown in a format as usable as possible, possibly using charts.

• Extend the Dolev-Yao threat model to support non-perfect cryptography

Dolev and Yao threat model, used in AVISPA and SPAN for the formal validation

of security protocols, assumes perfect cryptography. The intruder cannot break

cryptography. However, the taxonomy of attacks proposed in this thesis has

clearly shown cryptanalysis as a potential security threat to digital signatures.

In [39], the authors propose an approach to weaken this hypothesis, by means of

probabilistic considerations on the strength of cryptographic functions. A natural

extension of the threat model used to formally validate the security of OFEPSP+

would be to integrate this proposal, being capable of considering more realistic

scenarios.

• Formally validate fairness in OFEPSP+

As commented in the evaluation of OFEPSP+, Section 10.4, AVISPA does not

explicitly support fairness and non-repudiation security goals. In [67], it is demon-

strated that the fair exchange security goal can be reduced, via a meta-reasoning

step, to a secrecy goal. Thereby, fair exchange protocols that apply symmetric

encryption to provide fairness are able to use secrecy of goal to validate fairness.

However, OFEPSP+ does not provide confidentiality on any item. Fairness is

achieved by means of the signature policies fulfillment, and as result, this ap-

proach could not be used.

Another recent approach to validate fairness consists of using special predicates

(has, none, aknows) and goal formulas [136]. In this case, only CL-AtSe back-

end support them. It would be recommended to complete OFEPSP+ formal

validation by using this second approach.

216

Part V

Bibliography and Appendices

217

Bibliography

[1] O. AciiÇmez. Yet another MicroArchitectural Attack: Exploiting I-cache. Confer-

ence on Computer and Communications Security. ACM workshop on Computer

Security Architecture, pp. 11–18 (2007) 269

[2] O. AciiÇmez, Ç. K. KoÇ, and J.-P. Seifert. On The Power of Simple Branch Predic-

tion Analysis. ACM Symposium on Information, Computer and Communications

Security (ASIACCS’07), pp. 312–320, ACM Press (2007) 269

[3] O. AciiÇmez, Ç. K. KoÇ, and J.-P. Seifert. Predicting Secret Keys via Branch

Prediction. Topics in Cryptology - RSA Conference 2007, LNCS 4377, pp. 225–

242, Springer–Verlag (2007) 267, 268

[4] O. AciiÇmez, W. Schindler, and Ç. K. KoÇ. Improving Brumley and Boneh Timing

Attack on Unprotected SSL Implementations. 12th ACM Conference on Computer

and Communications Security, pp. 139–146, ACM Press (2005) 263

[5] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509 Public Key

Infrastructure. Time-Stamp Protocol (TSP). Internet Engineering Task Force –

Request for Comments 3161 (2001) 151, 191

[6] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key In-

frastructure. Certificate Management Protocol (CMP). Internet Engineering Task

Force – Request for Comments 4210 (2005) 24, 53, 283

[7] J. M. Alonso, R. Bordon, M. Beltran, and A. Guzman. LDAP injection techniques.

11th IEEE Singapore International Conference on Communication Systems (ICCS

2008), pp. 980 – 986 (2008) 286

[8] A. Alsaid and C. J. Mitchel. Dynamic content attacks on digital signatures. Infor-

mation Management & Computer Security 13(4). pp. 328–336 (2005) 51, 63

[9] E. Amoroso. Fundamentals of Computer Security Technology. Prentice-Hall (1994)

167

[10] Annual Report. Panda Labs (2009) 7, 81

219

BIBLIOGRAPHY

[11] N. Asokan. Fairness in electronic commerce. PhD thesis, Waterloo, Ontario,

Canada (1998) 38

[12] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.

4th ACM conference on computer and communications security, pp. 7–17 (1997)

39

[13] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P.

Hankes Drielsma, P.-C. Heam, O. Kouchnarenko, J. Mantovani, S. Modersheim,

D. von Oheimb, M. Rusinowitch, J. Santos Santiago, M. Turuani, L. Vigano, and

L. Vigneron. The AVISPA Tool for the automated validation of internet secu-

rity protocols and applications. 17th International Conference on Computer Aided

Verification (CAV’2005), LNCS 3576, pp. 281–285, Springer (2005) 199

[14] A. Armando and L. Compagna. SATMC: a SAT-based model checker for security

protocols. 9th European Conference on Logics in Artificial Intelligence (JELIA’04),

LNAI 3229, pp- 730–733, Springer–Verlag (2004) 199

[15] AVISPA: Automated validation of internet security protocols and applications

(2003) FET Open Project IST-2001-39252. http://www.avispa-project.org/

199, 205

[16] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Language (2003).

Available at http://www.avispa-project.org/publications.html 199

[17] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Tax-

onomy of Dependable and Secure Computing. IEEE Transactions on Dependable

and Secure Computing, 1(1), pp. 11–33 (2004) 67, 79

[18] A. Axelsson. Intrusion Detection Systems: a Survey and Taxonomy. Technical

Report No 99-15, Department of Computer Engineering, Chalmers University,

Gothenburg (2000) 42

[19] B. Balacheff, D. Chan, L. Chen, S. Pearson, and G. Proudler. Securing Intelligent

Adjuncts Using Trusted Computing Platform Technology. IFIP TC8/WG 8.8 4th

Working Conference on Smart Card Research and Advanced Applications, pp.

177–195 (2000) 61

[20] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted Comput-

ing Platforms: TCPA Technology in Context, Prentice Hall PTR, Upper Saddle

River, New Jersey (2003) 62

220

http://www.avispa-project.org/
http://www.avispa-project.org/publications.html

BIBLIOGRAPHY

[21] B. Balacheff, L. Chen, D. Plaquin, and G. Proudler. A trusted process to digitally

sign a document. Workshop on new security paradigms, pp. 79–86 (2001) 61

[22] D. Balfanz and E. W. Felten. Hand-held computers can be better smart cards. 8th

USENIX Security Symposium, pp. 15–24 (1999) 58

[23] F. Bao, R. H. Deng, and W. Mao. Efficient and practical fair exchange protocols

with off-line TTP. IEEE symposium on security and privacy (1998) 38

[24] E. Barker. Recommendation for Obtaining Assurances for Digital Signature Ap-

plications. NIST Special Publication 800–89 (2006) 51

[25] D.A. Basin, M. Sebastian, and L. Vigano. OFMC: A symbolic model checker for

security protocols. International Journal of Information Security, 4(3), pp. 181–208

(2005) 199

[26] I. Z. Berta. Why are not digital signatures spreading as quickly as it was ex-

pected? MBA dissertation, Buckinghamshire Chilterns University College, Buck-

inghamshire Business School, Számalk Open Business School (2004) 209

[27] I. Z. Berta. Mitigating the attacks of malicious terminals. PhD Dissertation. Bu-

dapest University of Technology and Economics (2005) 55, 61

[28] I. Z. Berta. Using multiple smart cards for signing messages at malicious terminals.

9th Information Security Conference. LNCS 4176, pp. 246–256 (2006) 56

[29] I. Z. Berta, L. Buttyán, and I. Vajda. Mitigating the Untrusted Terminal Problem

Using Conditional Signatures. International Conference on Information Technology

(ITCC 2004) (2004) 55

[30] I. Z. Berta, L. Buttyán, and I. Vajda. A Framework for the Revocation of Un-

intended Digital Signatures Initiated by Malicious Terminals. IEEE Transactions

On Dependable And Secure Computing, 2(3), pp. 268-272 (2005) 55

[31] I. Z. Berta and I. Vajda. Limitations of humans when using malicious terminals.

Tatra Mountains Mathematical Publications (2005) 63

[32] R. Bevan and E. Knudsen. Ways to Enhance DPA. ICISC 2002, LNCS 2587, pp.

327–342, Springer–Verlag (2003) 264

[33] K. Bicakcia and N. Baykalb. Improved server assisted signatures. Computer Net-

works, 47(3), pp. 351–366 (2005) 62

221

BIBLIOGRAPHY

[34] M. Bishop. A taxonomy of (Unix) system and network vulnerabilities. Techni-

cal Report CSE–9510. Department of Computer Science, University of California

(1995) 42

[35] M. Bishop. Vulnerabilities Analysis. International Symposium on Recent Advances

in Intrusion Detection (1999) 42

[36] M. Bishop and D. Bailey. A critical analysis of vulnerability taxonomies. Technical

Report CSE–96–11. Department of Computer Science, University of California

(1996) 42, 43

[37] Y. Boichut, P.-C. Heam, O. Kouchnarenko, and F. Oehl. Improvements on the

Genet and Klay Technique to Automatically Verify Security Protocols. Automated

Verification of Infinite States Systems (AVIS’04), pp. 1–11 (2004) 199

[38] S. Bratus, N. D’Cunha1, E. Sparks, and S. W. Smith. TOCTOU, Traps, and

Trusted Computing. LNCS 4968, pp. 14–32 (2008) 62

[39] R. Bresciani and A. Butterfield. Weakening the Dolev-Yao model through proba-

bility. 2nd ACM International Conference on Security of Information and Networks

(SIN 2009), pp. 293–297, ACM Press (2009) 216

[40] M. A. Broderick, V. R. Gibson, and P. Tarasewich. Electronic Signatures: They’re

legal, Now What? Internet Research: Networking Applications and Policy, 11(5),

pp. 423–434 (2001) 29

[41] D. Brumley and D. Boneh. Remote Timing Attacks are Practical. 12th Usenix

Security Symposium, pp. 1–14 (2003) 56, 262

[42] F. Buccafurri and G. Lax. Hardening digital signatures against untrusted signa-

ture software. 2nd International Conference on Digital Information Management

(ICDIM ’07), pp. 159-164 (2007) 64

[43] F. Buccafurri, G. Caminiti, and G. Lax. The Dal̀ı Attack on Digital Signature.

Journal of information assurance and security. Dynamic Publishers Inc., USA

(2008) 244, 279

[44] F. Buccafurri, G. Caminiti, and G. Lax. Fortifying the Dali Attack on Digital Sig-

nature. 2nd ACM International Conference on Security of Information and Net-

works (SIN 2009), pp. 278–287, . ACM Press (2009) 244, 279

[45] CEN Workshop Agreement CWA 14169 – Secure signature–creation devices EAL

4+. The European Committee for Standardization (CEN) (2004) 50, 70

222

BIBLIOGRAPHY

[46] CEN Workshop Agreement CWA 14170 – Security Requirements for signature

creation applications. The European Committee for Standardization (CEN) (2004)

vii, 9, 43, 51, 69, 70, 72, 167

[47] CEN Workshop Agreement CWA 14171 – General guidelines for electronic signa-

ture verification. The European Committee for Standardization (CEN) (2004) vii,

9, 43, 51, 72, 73, 74, 90, 167, 284

[48] A. Chari, J. Rao, and P. Rohatgi. Template Attacks. 4th International Workshop

on Cryptographic Hardware and Embedded Systems (CHES02), LNCS 2523, pp.

51–62, Springer–Verlag (2002) 265

[49] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani, S.

Modersheim, and L. Vigneron. A High Level Protocol Specification Language for

Industrial Security-Sensitive Protocols. Workshop on Specification and Automated

Processing of Security Requirements (SAPS 2004), Austrian Computer Society

(2004) 199

[50] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. Internet X.509 Public Key

Infrastructure. Certificate Policy and Certification Practices Framework. Internet

Engineering Task Force – Request for Comments 3647 (2003) 22, 54, 284

[51] T. Coffey and P. Saidha. Non-repudiation with mandatory proof of receipt. ACM

SIGCOMM (1996) 39

[52] Common Attack Pattern Enumeration and Classification (CAPEC)- A Community

Knowledge Resource for Building Secure Software. MITRE Corporation. Available

at http://capec.mitre.org/. 47

[53] Common Criteria for Information Technology Security Evaluation, Version 3.1,

Revision 3. Common Criteria Development Board (2009). Available at http://

www.commoncriteriaportal.org 49

[54] Common Methodology for Information Technology Security Evaluation, Version

3.1, Revision 3. Common Criteria Development Board (2009) 49, 214

[55] Common Vulnerabilities and Exposures (CVE) - The Standard for Information

Security Vulnerability Names. MITRE Corporation. Available at http://cve.

mitre.org/. 46, 47

[56] Common Weakness Enumeration (CWE) - A Community Developed Dictionary of

Software Weakness Types. MITRE Corporation. MITRE Corporation. Available

at http://cwe.mitre.org. 47

223

http://capec.mitre.org/
http://www.commoncriteriaportal.org
http://www.commoncriteriaportal.org
http://cve.mitre.org/
http://cve.mitre.org/
http://cwe.mitre.org

BIBLIOGRAPHY

[57] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, and W. Polk. Internet

X.509 Public Key Infrastructure. Certificate and Certificate Revocation List (CRL)

Profile. Internet Engineering Task Force – Request for Comments 5280 (2008) 22,

24, 92, 117, 141, 285

[58] D. Coppersmith. Another Birthday Attack. Advances in Cryptology - Proceedings

of Crypto ’85, LNCS 218, pp. 369–378, Springer–Verlag (1985) 271

[59] J. C. Cruellas, G. Karlinger, D. Pinkas, and J. Ross. XML Advanced Electronic

Signatures (XAdES). World Wide Web Consortium (W3C) (2003) 24, 27, 138

[60] D. Cruz Rivero. Eficacia formal y probatoria de la firma electrónica. Marcial Pons

(Ed.). ISBN: 84–9768–353–6 (2006) 6, 28, 30, 31

[61] P. Dasgupta, K. Chatha, and S. K. S. Gupta. Vulnerabilities of PKI based

Smartcards. IEEE Military Communications Conference (MILCOM 2007), pp. 1–5

(2007) 56, 261

[62] N. Davis. Secure Software Development Life Cycle Processes: A Technology Scout-

ing Report. Technical Note CMU/SEI-2005-TN-024 (2005) 53

[63] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions

of Information Theory, 22(6), pp. 644–654 (1976) 4, 21

[64] X. Ding, D. Mazzocchi, and G. Tsudik. Experimenting with Server-Aided Signa-

tures. Network and Distributed Systems Security Symposium (NDSS ’02) (2002)

62

[65] Document Object Model. W3C. Available at http://www.w3.org/DOM/ 293

[66] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions

on Information Theory, 2(29) (1983) 199

[67] P. H. Drielsma, S. Mödersheim. The ASW Protocol Revisited: A Unified View.

Electronic Notes in Theoretical Computer Science (ENTCS), 125(1), pp. 145–161

(2005) 216

[68] Electronic Signatures in Global and National Commerce Act (e-sign). Fed-

eral Trade Commission, Department of Commerce. United States of Amer-

ica. June 30, 2000. Available at www.senate.gov/search/index.htmlunderS.

761inthe106thCongress. 28

[69] EMV Integrated Circuit Card Specification for Payment Systems. Book 3: Appli-

cation Specification. Version 4.1. EMVCo (2007) 37

224

http://www.w3.org/DOM/
www.senate.gov/search/index.html under S.761 in the 106th Congress
www.senate.gov/search/index.html under S.761 in the 106th Congress

BIBLIOGRAPHY

[70] ETSI TR 102 038 v1.1.1. TC Security – Electronic Signatures and Infrastructures

(ESI); XML format for signature policies. European Telecommunications Stan-

dards Institute (2002) 26, 28, 158

[71] ETSI TR 102 041 v1.1.1 Signatures Policies Report. European Telecommunications

Standards Institute (2002) 8, 11, 25, 27, 53, 116, 146, 147, 153

[72] ETSI TR 102 045 v1.1.1. Electronic Signatures and Infrastructures (ESI); Signa-

ture policy for extended business model. European Telecommunications Standards

Institute (2003) 9, 28, 115, 125, 126

[73] ETSI TR 102 272 v1.1.1. Electronic Signatures and Infrastructures (ESI); ASN.1

format for signature policies. European Telecommunications Standards Institute

(2003) 26, 28, 117, 118, 121, 122, 124, 128, 129, 158

[74] ETSI TS 101 733 v1.7.4. Electronic Signatures and Infrastructures (ESI); CMS Ad-

vanced Electronic Signatures (CAdES). European Telecommunications Standards

Institute (2008) 24, 27, 83, 118, 124, 131, 138, 139, 142, 159, 288

[75] ETSI TS 101 903 v1.3.2. XML Advanced Electronic Signatures (XAdES). Euro-

pean Telecommunications Standards Institute (ETSI) (2006) 24, 27, 83, 138, 139,

159, 190, 191, 192, 194, 195, 288, 292

[76] European Directive 1999/93/CE of the European Parliament and of the Council

of 13 December 1999 on a Community framework for electronic signatures (1999)

4, 28, 29, 70, 72

[77] P. Fahn and P. Pearson. IPA: A New Class of Power Attacks. 1st International

Workshop on Cryptographic Hardware and Embedded Systems (CHES 1999),

LNCS 1717, pp. 173–186, Springer–Verlag (1999) 56, 265

[78] P. Fites and M. P. Kratz. Information Systems Security: A Practitioner’s Refer-

ence. Van Nostrand Reinhold, New York (1993) 275

[79] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. 6th

Workshop on Hot Topics in Operating Systems (1997) 177

[80] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Re-

sults. Cryptographic Hardware and Embedded Systems (CHES 2001), LNCS 2162,

pp. 251–261, Springer–Verlag (2001) 56, 266

[81] S. Garriss, R. Sailer, R. Caceres, L. van Doorn, S. Berger, and X. Zhang. Towards

Trustworthy Kiosk Computing. IEEE Workshop on Mobile Computing Systems

and Applications (HotMobile 2007), pp. 41–45 (2007) 59

225

BIBLIOGRAPHY

[82] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S. Quarterman, and

B. Schneier. CyberInsecurity: The Cost of Monopoly. Report, CCIA (2003) 177

[83] D. K. Gifford, L. C. Stewart, A. C. Payne, and G. W. Treese. Payment switches

for open networks. 40th IEEE Computer Society International Conference (COM-

PCON’95), pp. 26–31 (1995) 58

[84] P. Girard and J-L. Giraud. Software attacks on smart cards. Information Security

Technical Report, 8(1), pp. 55–66 (2003) 46, 56, 260, 261

[85] Y. Glouche, T. Genet, O. Heen, and O. Courtay. A Security Protocol Animator

Tool for AVISPA. ARTIST2 Workshop on Security Specification and Verification

of Embedded Systems (2006) 199

[86] Gúıas STIC del Centro Criptológico Nacional. Available at https://www.

ccn-cert.cni.es/index.php. Note: Most are classified documents not publicly

available. 52

[87] Guide for the Security Certification and Accreditation of Federal Information Sys-

tems. NIST Special Publication SP 800-37 (2004) 52

[88] P. Gutmann. BreakMS - Break Microsoft Private Key Encryption with a dictio-

nary attack (1997). Available at http://www.artofhacking.com/tucops/etc/

crypto/live/aoh_breakms.htm. 260

[89] P. Gutmann. How to recover private keys for Microsoft Internet Explorer, Internet

Information Server, Outlook Express, and many others - or - Where do your en-

cryption keys want to go today? (1998). Available at http://www.cs.auckland.

ac.nz/~pgut001/pubs/breakms.txt. 260

[90] S. Hansman. A Taxonomy of Network and Computer Attack Methodologies. Tech-

nical Report, Department of Computer Science and Software Engineering, Univer-

sity of Canterbury, Christchurch (2003) 42

[91] S. Hansman and R. Hunt. A taxonomy of network and computer attacks. Com-

puters & Security 24, pp. 31–43 (2005) 46

[92] M. Hartmann and L. Eckstein. TruPoSign: A trustworthy and mobile platform for

electronic signatures. Information Security & Business, Vieweg Verlag (2003) 57

[93] J. L. Hernández-Ardieta, F. H. Álvarez, and C. J. Suárez. Systems and Methods

for Using Cryptographic Keys. Application number: US 12/424324. Priority date:

15/04/2009 142, 210

226

https://www.ccn-cert.cni.es/index.php
https://www.ccn-cert.cni.es/index.php
http://www.artofhacking.com/tucops/etc/crypto/live/aoh_breakms.htm
http://www.artofhacking.com/tucops/etc/crypto/live/aoh_breakms.htm
http://www.cs.auckland.ac.nz/~pgut001/pubs/breakms.txt
http://www.cs.auckland.ac.nz/~pgut001/pubs/breakms.txt

BIBLIOGRAPHY

[94] J. L. Hernández-Ardieta, A. I. González-Tablas, and B. R. Álvarez. Protocolo de

intercambio justo para comercio electrónico basado en poĺıticas de firma. Actas

del II Simposio sobre Seguridad Informática SSI’07 (CEDI 2007), pp. 249–256,

Ed. Thomson (2007) 211

[95] J. L. Hernandez-Ardieta, A. I. Gonzalez-Tablas, and B. R. Alvarez. An Optimistic

Fair Exchange Protocol based on Signature Policies. Computers & Security, 27(7-

8), pp. 309–322 (2008) 11, 119, 211

[96] J. L. Hernández-Ardieta, A. I. González-Tablas, B. R. Álvarez, and A. Ribagorda.

Aumento de la Fiabilidad de Evidencias Digitales mediante la División del Entorno

de Firma en un Protocolo de Intercambio Justo. V Congreso Iberoamericano de

Seguridad Informática (CIBSI 2009) (2009) 210, 211

[97] J. L. Hernández-Ardieta, A. I. González-Tablas, and B. Ramos. Repudio de firmas

electrónicas en Infraestructuras de Clave Pública. Actas de la X Reunión sobre

Criptoloǵıa y Seguridad Informática (X RECSI 2008), pp. 595–606 (2008) 210

[98] J. L. Hernandez-Ardieta, A. I. Gonzalez-Tablas, and B. Ramos. Formal Validation

of OFEPSP+ with AVISPA. Joint Workshop on Automated Reasoning for Security

Protocol Analysis and Issues in the Theory of Security, LNCS 5511, pp. 124–137,

Springer–Verlag (2009) 12, 211

[99] J. L. Hernández-Ardieta, A. I. González-Tablas, and B. Ramos. Taxonomı́a de

ataques a entornos de creación de firmas electrónicas. Actas de la XI Reunión

sobre Criptoloǵıa y Seguridad Informática (XI RECSI 2010) (2010) 210

[100] J. L. Hernandez-Ardieta, A. I. Gonzalez-Tablas, B. Ramos, and A. Ribagorda. On

the Need to Divide the Signature Creation Environment. International Conference

on Security and Privacy (SECRYPT 2009), pp. 375–379 (2009) 210

[101] J. L. Hernandez-Ardieta, A. I. Gonzalez-Tablas, B. Ramos, and A. Ribagorda.

Extended Electronic Signature Policies. 2nd ACM International Conference on

Security of Information and Networks (SIN 2009), pp. 268–277, ACM Press (2009)

210

[102] B. Hill. A Taxonomy of Attacks against XML Digital Signatures & Encryp-

tion (2004). Available at http://www.isecpartners.com/files/iSEC_HILL_

AttackingXMLSecurity_Handout.pdf 44

[103] J. D. Howard and T. A. Longstaff. A Common Language for Computer Security

Incidents. Technical Report, Sandia National Laboratories (1998) 43

227

http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_Handout.pdf
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_Handout.pdf

BIBLIOGRAPHY

[104] IAIK XML Advanced Electronic Signatures (XAdES) add-on for XML Security

Toolkit (XSECT). Available at http://jce.iaik.tugraz.at/sic/products/

xml_security/xades 190

[105] IAIK XML Security Toolkit (XSECT). Available at http://jce.iaik.tugraz.

at/sic/products/xml_security/xsect 190

[106] V. M. Igure and R. D. Williams. Taxonomies of attacks and vulnerabilities in

computer systems. IEEE Communications Surveys and Tutorials, 10(1–4), pp. 6–

19 (2008) 42

[107] Information Security Committee, Section of Science & Technology, American

Bar Association – Digital Signatures Guidelines (1996). Available at http://www.

abanet.org/scitech/ec/isc/dsgfree.html 31

[108] Informe sobre nuevas tecnoloǵıas de autoprotección de clientes y sistemas. SE-

CUWARE, Jorge López Hernández-Ardieta (Ed.), CENIT-Segur@, ref. CENIT-

2007 2004 (2008) 57

[109] Institute for Applied Information Processing and Communications (IAIK). http:

//jce.iaik.tugraz.at/sic/products/xml_security 190

[110] Introducing the First Virtual Internet Payment System for Information Com-

merce. First Virtual, Inc. (1994) 58

[111] ISO/IEC 13335-1, Information technology – Security techniques – Management

of information and communications technology security – Part 1: Concepts and

models for information and communications technology security management. In-

ternational Organization for Standardization (2004) 3

[112] ISO/IEC DIS 13888-1, Information technology – Security techniques – Non repu-

diation – Part 1: General model. International Organization for Standardization

(2009) 3, 8, 33, 34, 35, 37

[113] ISO/IEC 13888-2, Information technology – Security techniques – Non-

repudiation – Part 2: Mechanisms using symmetric techniques. International Or-

ganization for Standardization (1998) 4, 34

[114] ISO/IEC 13888-3, Information technology – Security techniques – Non repudia-

tion – Part 3: Mechanisms Using Asymmetric Techniques. International Organi-

zation for Standardization (2009) 4, 34, 35, 37

228

http://jce.iaik.tugraz.at/sic/products/xml_security/xades
http://jce.iaik.tugraz.at/sic/products/xml_security/xades
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://www.abanet.org/scitech/ec/isc/dsgfree.html
http://jce.iaik.tugraz.at/sic/products/xml_security
http://jce.iaik.tugraz.at/sic/products/xml_security

BIBLIOGRAPHY

[115] ISO/IEC 14516, Information technology – Security techniques – Guidelines for the

use and management of Trusted Third Party services. International Organization

for Standardization (2002) 35

[116] ISO/IEC 15408–1, Information technology - Security techniques - Evaluation cri-

teria for IT security - Part 1:Introduction and general model. ISO/IEC JTC 1/SC

27 (2009) 7, 49

[117] ISO/IEC 15408–2, Information technology - Security techniques - Evaluation cri-

teria for IT security - Part 2:Security functional components. ISO/IEC JTC 1/SC

27 (2008) 49

[118] ISO/IEC 15408–3, Information technology - Security techniques - Evaluation cri-

teria for IT security - Part 3:Security assurance components. ISO/IEC JTC 1/SC

27 (2008) 49

[119] ISO/IEC 18045, Information technology - Security techniques - Methodology for

IT security evaluation. ISO/IEC JTC 1/SC 27 (2008) 49

[120] ISO/IEC 19791, Information technology - Security techniques - Security assess-

ment of operational systems. ISO/IEC JTC 1/SC 27/WG 3 (2009) 7, 52

[121] ISO/IEC 27005, Information technology - Security Techniques - Information se-

curity risk management. ISO/IEC JTC 1/SC 27 (2008) 52

[122] ISO/IEC 8824–1, Information technology – Abstract Syntax Notation One

(ASN.1): Specification of basic notation. International Organization for Standard-

ization (2002) 24

[123] ISO 7498-2, Information processing system – Open systems interconnection –

Basic reference model – Part 2: Security architecture. International Organization

for Standardization (1989) 3, 21, 69

[124] ITU–T Recommendation X.690. Information technology – ASN.1 encoding rules:

Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)

and Distinguished Encoding Rules (DER). ITU–T (2002) 117

[125] W. Jansen. Directions in Security Metrics Research. NISTIR 7564, National In-

stitute of Standards and Technology (2009) 213, 214

[126] Java Security. Available at http://java.sun.com/j2se/1.5.0/docs/guide/

security/index.html 190

229

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

BIBLIOGRAPHY

[127] M. Joye, P. Paillier, and B. Schoenmarkers. On Second-Order Differential Power

Analysis. 7th International Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2005), LNCS 3659, Springer–Verlag, pp. 293-308 (2005) 264

[128] JUnit testing framework. Available at http://www.junit.org/ 188

[129] A. Jøsang and B. AlFayyadh. Robust WYSIWYS: A method for ensuring that

What You See Is What You Sign. 6th Australasian conference on Information

security (AISC 2008), pp. 53-58 (2008) 60, 61

[130] A. Jøsang, D. Povey, and A. Ho. What You See is Not Always What You Sign.

Australian UNIX User Group (2002) 51, 251, 252, 275, 276, 279

[131] K. Kain. Electronic Documents and Digital Signatures. Doctoral Thesis (2003)

44, 51, 253, 254, 255, 280, 281, 282

[132] R. Kehr, J. Posegga, and H. Vogt. PCA: Jini-based Personal Card Assistant.

Secure Networking - CQRE [Secure]’99, LNCS 1740, pp. 64–75. Springer–Verlag

(1999) 57

[133] J. Kelsey and T. Kohno. Herding Hash Functions and the Nostradamus Attack.

Advances in Cryptology - EUROCRYPT 2006, LNCS 4004, pp. 183–200 (2006)

271

[134] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much

less than 2n work. EUROCRYPT 2005, LNCS 3494, pp. 474–490 (2005) 271

[135] R. Kilian-Kehr and J. Posegga. Smart Cards in Interaction: Towards Trustwor-

thy Digital Signatures. 5th Conference on Smart Card Research and Advanced

Application Conference (CARDIS 2002), 5, pp. 11–18 (2002) 56, 62

[136] F. Klay and L. Vigneron. Automatic Methods for Analyzing Non-repudiation

Protocols with an Active Intruder. 5th International Workshop on Formal Aspects

in Security and Trust (FAST 2008), LNCS 5491, pp. 192–209, Springer (2009) 216

[137] V. Klima. Tunnels in hash functions: MD5 collisions within a minute. IACR

ePrint archive (2006) 271

[138] P. C. Kocher. Timing attacks on Implementations of Diffie-Hellman, RSA, DSS

and Other Systems. Advances in Cryptology - CRYPTO ’96, LNCS 1109, pp.

104–113, Springer–Verlag (1996) 261, 262

[139] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. CRYPTO 1999,

LNCS 1666, pp. 388–397, Springer–Verlag (1999) 263, 264

230

http://www.junit.org/

BIBLIOGRAPHY

[140] O. Kömmerling and M. G. Kuhn. Design Principles for Tamper-Resistant Smart-

card Processors. Proc. USENIX Workshop on Smartcard Technology (WOST’99),

1999. 81

[141] S. Kremer and O. Markowitch. Optimistic non-repudiable information exchange.

21st Symposium on information theory in the Benelux. Wassenaar, The Nether-

lands: Werkgemeenschap Informatieen Communicatietheorie, Enschede, pp. 139–

146 (2000) 39

[142] S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of fair non-

repudiation protocols. Computer Communications, 25, pp. 1601–1621 (2002) 39,

119, 146

[143] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A taxonomy of

computer program security flaws. ACM Computing Surveys, 26(3), pp. 211–254

(1994) 42

[144] H. Langweg and T. Kristiansen. Extending the Trusted Path in Client-Server

Interaction. CoRR abs/cs/0611102 (2006) 64

[145] H. Langweg. Malware attacks on electronic signatures revisited. Sicherheit 2006:

Jahrestagung Fachbereich Sicherheit der Gesellschaft für Informatik, LNI, pp. 244–

255 (2006) 248, 249, 250, 251, 276, 277, 278

[146] H. Langweg and E. Snekkenes. A Classification of Malicious Software Attacks.

23rd IEEE International Performance, Computing, and Communications Confer-

ence (2004) 42

[147] T-H. Le, C. Canovas, and J. Clediere. An overview of side channel analysis

attacks. ACM Symposium on Information, Computer and Communications Se-

curity (ASIACCS 2008), pp. 33–43 (2008) 56, 263, 264, 265

[148] T.H. Le, J. Clédière, C. Canovas, C.Servière, J.L. Lacoume, and B. Robisson. A

proposition for Correlation Power Analysis enhancement. 8th International Work-

shop on Cryptographic Hardware and Embedded Systems (CHES 2006), LNCS

4249, pp. 174–186, Springer–Verlag (2006) 264

[149] B. Lee and K. Kim. Fair Exchange of Digital Signatures using Conditional Signa-

ture. Symposium on Cryptography and Information Security (SCIS 2002) (2002)

38, 55

[150] S. Lefranc and D. Naccache. Cut and paste attacks with java. Cryptology ePrint

Archive, Report (2002). Available at http://eprint.iacr.org/. 244, 288

231

http://eprint.iacr.org/

BIBLIOGRAPHY

[151] D. Lekkas. Establishing and managing trust within the Public Key Infrastructure.

Computer Communications, 26(16), pp. 1815–1825 (2003) 210

[152] D. Lekkas, S. Gritzalis, and L. Mitrou. Withdrawing a declaration of will: To-

wards a framework for Digital Signature Revocation. Internet Research, 15(4) pp.

400–420 (2005) 55

[153] A. K. Lenstra and A. Shamir. Analysis and optimization of the TWINKLE fac-

toring Device. EUROCRYPT 2000, LNCS 1807, pp. 35–52, Springer–Verlag (2000)

273

[154] Ley Española 59/2003, de 19 de Diciembre, de Firma Electrónica (2003) 4, 28,

29, 31

[155] U. Lindqvist and E. Johsson. How to Systematically Classify Computer Security

Intrusions. IEEE Security and Privacy, pp. 154–163 (1997) 42

[156] H. Lisha, N. Zhang, L. He, and I. Rogers. Secure M-commerce Transactions: A

Third Party Based Signature Protocol. 3rd International Symposium on Informa-

tion Assurance and Security, pp. 3–8 (2007) 62

[157] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner,

and J. F. Farrell. The Inevitability of Failure: The Flawed Assumption of Security

in Modern Computing Environments. 21st National Information Systems Security

Conference, pp. 303–314 (1998) 52

[158] D. L. Lough. A taxonomy of computer attacks with applications to wireless net-

works. PhD thesis, Virginia Polytechnic Institute and State University (2001) 43,

166

[159] J. Loughry and D. A. Umphress. Information Leakage from Optical Emanations.

ACM Transactions on Information and System Security, 5(3), pp. 262–289 (2002)

275

[160] Malicious Software (malware): a Security Threat to the Internet Economy. Or-

ganization for Economic Co-operation and Development (OECD) (2008) 7, 81

[161] S. Matamoros, J. Martinez, and A. Maña. Entorno de firma confiable basado en

PDA. I Simposio Español de Negocio Electrónico (2001) 57

[162] A. Matthews. Low cost attacks on smart cards: The electromagnetic side-

channel. Next Generation Security Software (2006). Available at http://www.

ngssoftware.com/research/papers/EMA.pdf. 266

232

http://www.ngssoftware.com/research/papers/EMA.pdf
http://www.ngssoftware.com/research/papers/EMA.pdf

BIBLIOGRAPHY

[163] T. Matsumoto. Human-computer cryptography: an attempt. 3rd ACM conference

on Computer and communications security, pp. 68–75 (1996) 63

[164] J. Marchesini, S.W. Smith, and M. Zhao. Keyjacking: the surprising insecurity

of client-side SSL. Computers & Security, 24(2), pp. 109–123 (2005) 255, 256, 257,

258, 259, 260

[165] U. Maurer. Intrinsic limitations of digital signatures and how to cope with them.

6th Information Security Conference (ISC’03), LNCS 2851, pp. 180–192 (2003) 54,

63

[166] M-E. Maurer and A. De Luca. SeCuUI: Autocomplete your Terminal Input. In-

ternational Conference on Human-Computer Interaction with Mobile Devices and

Services (2009) 59

[167] A. McCullagh and W. Caelli. Non-repudiation in the digital Environment. First

Monday, 5(8) (2000). Available at http://firstmonday.org/issues/issue5_8/

mccullagh/index.html. 30

[168] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the ether: a framework for

securing sensitive user input. USENIX Annual Technical Conference, pp. 185–198

(2006) 60

[169] E. Mills. Secure Software? Experts Say it’s no Longer a Pipe Dream. CNET

News, April 20 (2009) 53

[170] Mobile Security Report. McAfee (2009) 57

[171] C. van den Munckhof. Fooling the Trusted Platform Module using a simple reset.

Seminar at the Technische Universiteit Eindhoven (2009) 62

[172] T. Murmann and H. Rossnagel. How Secure Are Current Mobile Operating Sys-

tems? 8th IFIP/CMS 2004, IFIP 175, pp. 47–58 (2004) 57

[173] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. Internet X.509

Public Key Infrastructure. Online Certificate Status Protocol – OCSP. Internet

Engineering Task Force – Request for Comments 2560 (1999) 23, 91, 92

[174] J. Müller-Quade and S. Röhrich. What you see is what you sign. Heidelberger

Innovation Forum (2007) 60, 61

[175] A. M. Nadal and J. L. F. Gomila. Delimitación de Responsabilidades en Caso de

Revocación de un Certificado de Firma Electrónica. I Simposio Español de Negocio

Electrónico (2001) 31

233

http://firstmonday.org/issues/issue5_8/mccullagh/index.html
http://firstmonday.org/issues/issue5_8/mccullagh/index.html

BIBLIOGRAPHY

[176] M. Naor and B. Pinkas. Visual Authentication and Identification. 17th Annual

International Cryptology Conference on Advances in Cryptology, LNCS 1294, pp.

322–336 (1997) 63

[177] National Vulnerability Database (NVD). National Institute of Standards and

Technology (NIST). Available at http://nvd.nist.gov/home.cfm. 46

[178] F. Nentwich, E. Kirda, and C. Kruegel. Practical Security Aspects of Digital

Signature Systems. International Secure Systems Lab, TR-Seclab-0606-001 (2006)

247

[179] Y. Okada, Y. Manabe, and T. Okamoto. An optimistic fair exchange protocol

and its security in the universal composability framework. International Journal

of Applied Cryptography, 1(1), pp. 70–77 (2008) 39

[180] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a remote ter-

minal application with a mobile trusted device. Computer Security Applications

Conference, pp. 438–447 (2004) 59

[181] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without a

Trusted Third Party. Technical Report TUD-BS-1999-02, Darmstadt University

of Technology, Department of Computer Science, Darmstadt, Germany (1999) 39

[182] S. C. Payne. A Guide to Security Metrics. SANS Security Essentials GSEC Prac-

tical Assignment, Version 1.2e (2006) 213

[183] A. Pellegrini, V. Bertacco, and T. Austin. Fault-Based Attack of RSA Authenti-

cation. Design, Automation and Test in Europe Conference (DATE-2010) (2010)

267

[184] Personal Information Protection and Electronic Documents Act. Department of

Justice. Government of Canada. May 30th, 2008 28, 29, 30

[185] Phishing Activity Trends Report. APWG (2009) 7, 81

[186] F. Piessens. A taxonomy of causes of software vulnerabilities in Internet soft-

ware. 13th International Symposium on Software Reliability Engineering, pp. 47–

52 (2002) 42

[187] D. Pinkas, N. Pope, and J. Ross. CMS Advanced Electronic Signatures (CAdES).

Internet Engineering Task Force – Request for Comments 5126 (2008) 24, 118,

124, 131, 138, 139, 142

234

http://nvd.nist.gov/home.cfm

BIBLIOGRAPHY

[188] F. Piva. Timeliness in fair exchange protocols. Workshop on Formal Methods in

Cryptography (2009) 38

[189] PKCS #11 v2.30: Cryptographic Token Interface Standard. RSA Laboratories

(2009) 51

[190] PPSCVA-T1, EAL1. Perfil de Proteccion para la aplicación de creación y verifi-

cación de firma electrónica Tipo 1, con control exclusivo de los interfaces con el

firmante y con el nivel de evaluación de los requisitos de seguridad EAL1. Instituto

Nacional de Tecnoloǵıas de la Comunicación (INTECO) (2008) 50

[191] PPSCVA-T1, EAL3. Perfil de Proteccion para la aplicación de creación y verifi-

cación de firma electrónica Tipo 1, con control exclusivo de los interfaces con el

firmante y con el nivel de evaluación de los requisitos de seguridad EAL3. Instituto

Nacional de Tecnoloǵıas de la Comunicación (INTECO) (2008) 50

[192] PPSCVA-T2, EAL1. Perfil de Proteccion para la aplicación de creación y veri-

ficación de firma electrónica Tipo 2, con nivel de evaluación de los requisitos de

seguridad EAL1. Instituto Nacional de Tecnoloǵıas de la Comunicación (INTECO)

(2008) 50

[193] PPSCVA-T2, EAL3. Perfil de Proteccion para la aplicación de creación y veri-

ficación de firma electrónica Tipo 2, con nivel de evaluación de los requisitos de

seguridad EAL3. Instituto Nacional de Tecnoloǵıas de la Comunicación (INTECO)

(2008) 50

[194] Provisional Signature Schemes. United States Patent Application 12/389295

(2009) 62

[195] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures

and Counter-measures for Smart Cards. International Conference on Research in

Smart Cards (E-smart 2001), LNCS 2140, pp. 200–210, Springer–Verlag (2001)

266

[196] A. J. Rae and L. P. Wildman. A Taxonomy of attacks on secure devices. 4th

Australian Information Warfare and IT Security Conference, pp. 251–264 (2003)

42, 45

[197] I. Ray and I. Ray. Fair exchange in e-commerce. ACM SIGecom Exchange, 3(2),

pp. 9–17 (2002) 11, 38, 119

[198] Real-World Malware Statistics. SurfRight (2009) 7, 81

235

BIBLIOGRAPHY

[199] R. L. Rivest. Issues in Cryptography. Computers, Freedom, and Privacy Confer-

ence (2001) 54

[200] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM, 21(2), pp.

120–126 (1978) 21

[201] M. Roe. Cryptography and Evidence. Doctoral Thesis. University of Cambridge

Computer Laboratory (1997) 54

[202] S. J. Ross, J. L. Hill, M. Y. Chen, A. D. Joseph, D. E. Culler, and E. A. Brewer.

A Composable Framework for Secure Multi-Modal Access to Internet Services

from Post-PC Devices. Mobile Networks and Applications 7, pp. 389–406, Kluwer

Academic Publishers (2002) 59

[203] J. Ross, D. Pinkas, and N. Pope. Electronic Signature Policies. Internet Engi-

neering Task Force – Request For Comments 3125 (Experimental) (2001) 11, 25,

27, 116, 117, 118, 121, 122, 124, 128, 129

[204] A. Ruiz-Mart́ınez, D. Sánchez-Mart́ınez, M. Mart́ınez-Montesinos, and A. F.

Gómez-Skarmeta. A Survey of Electronic Signature Solutions in Mobile Devices.

Journal of Theoretical and Applied Electronic Commerce Research, 2(3), pp. 94–

109 (2007) 57

[205] J. Rushby. Critical system properties: Survey and taxonomy. Technical Report

CSL-93-01, Computer Science Laboratory. SRI International (1994) 81

[206] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of

a TCG-based integrity measurement architecture. USENIX Security Symposium

(2004) 59

[207] K. Scheibelhofer. What You See Is What You Sign – Trustworthy Display of XML

Documents for Signing and Verification. IFIP TC6/TC11 International Conference

on Communications and Multimedia Security Issues of the New Century, pp. 35

(2001) 51

[208] W. Schindler. A Timing Attack against RSA with the Chinese Remainder Theo-

rem. Cryptographic Hardware and Embedded Systems (CHES 2000), LNCS 1965,

pp. 110–125. Springer–Verlag (2000) 56, 262

[209] W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side

Channel Cryptanalysis. 7th International Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2005), LNCS 3659, pages 30–46 (2005) 265

236

BIBLIOGRAPHY

[210] F. Schneider and K. P. Birman. The monoculture of risk put into context. IEEE

Security and Privacy, 7(1), pp. 14–17 (2009) 177

[211] SET Secure Electronic Transaction (TM). Version 1.0. Book 1: Business descrip-

tion. Book 2: Programmer’s guide. Book 3: Formal protocol definition. VISA

(1997) 37

[212] A. Shamir and E. Tromer. Special-Purpose Hardware for Factoring: the NFS

Sieving Step. Invited talk at the Workshop on Special Purpose Hardware for At-

tacking Cryptographic Systems (SHARCS) (2005) 273

[213] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical

Journal, 28(4), pp. 656–715 (1949) 179

[214] M-H. Shao, G. Wang, and J. Zhou. Some common attacks against certified email

protocols and the countermeasures. Computer Communications, 29, pp. 2759-2769

(2006) 156

[215] R. Sharp, A. Madhavapeddy, R. Want, and T. Pering. Enhancing Web Browsing

Security on Public Terminals Using Mobile Composition. International Conference

on Mobile Systems, Applications And Services, pp. 94–105 (2008) 59

[216] R. Sharp, J. Scott, and A. Beresford. Secure mobile computing via public termi-

nals. Pervasive 2006, pp. 238–253. Springer–Verlag (2006) 59

[217] D-H. Shih, B. Lin, H-S. Chiang, and M-H. Shih. Security aspects of mobile phone

virus: A critical survey. Industrial Management & Data Systems, 108(4), pp. 478–

494 (2008) 57

[218] R. Shirey. Internet Security Glossary, Version 2. Internet Engineering Task Force

– Request for Comments 4949 (2007) 3, 68, 80

[219] A. Spalka, A. B. Cremers, and H. Langweg. The Fairy Tale of What You See Is

What You Sign. Trojan Horse Attacks on Software for Digital Signatures. IFIP

Working Conference on Security and Control of IT in Society-II, pp. 75–86 (2001)

98

[220] A. Spalka, A. B. Cremers, and H. Langweg. Protecting the Creation of Digital Sig-

natures with Trusted Computing Platform Technology Against Attacks by Trojan

Horse Programs. IFIP TC11 16th International Conference on Information Secu-

rity (2001) 61, 62

[221] A. Spalka, A. B. Cremers, and H. Langweg. Trojan Horse Attacks on Software

for Electronic Signatures. Informatica 26, pp. 191–204 (2002) 245, 246

237

BIBLIOGRAPHY

[222] SSE-CMM: Systems Security Engineering Capability Maturity Model. Interna-

tional Systems Security Engineering Association (ISSEA) (2008) 213

[223] H. Tanaka. Evaluation of Information Leakage via Electromagnetic Emanation

and Effectiveness of Tempest. IEICE Transactions on Information and Systems,

91(5), pp. 1439–1446 (2008) 56, 266

[224] The side-channel cryptanalysis lounge. European Network of Excellence in Cryp-

tology. Available at http://www.crypto.ruhr-uni-bochum.de/en_sclounge.

html. 45

[225] K. Tiri. Side-channel attack pitfalls. 44th Annual Conference on Design Automa-

tion, pp. 15–20 (2007) 263

[226] Trusted Computing Group. TPM Main Part 1 Design Principles, Specification

Version 1.2 Revision 94 (2006) 59, 112

[227] Trusted Computing Group. TCG Mobile Trusted Module Specification, Version

1.0 Revision 1 (2007) 112

[228] M. Turuani. The CL-Atse Protocol Analyser. 17th International Conference on

Rewriting Techniques and Applications, LNCS 4098, pp. 277–286, Springer (2006)

199

[229] UNCITRAL Model Law on Electronic Signatures with Guide to Enactment,

United Nations (2001) 4, 28, 29, 30, 31

[230] G. Wang and S. Wang. Preimage Attack on Hash Function RIPEMD. 5th In-

ternational Conference on Information Security Practice and Experience, LNCS

5451, pp. 274–284 (2009) 272

[231] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. Advances

in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, LNCS 3494, pp. 19–35

(2005) 270

[232] W3C Recommendation – Extensible Markup Language (XML) 1.0. Fourth Edi-

tion (2006) 24

[233] W3C Recommendation – XML Signature Syntax and Processing. Second Edition

(2008) 194, 292

[234] S. Yang, S. Y. W. Su, and H. Lam. A non-repudiation message transfer protocol

for collaborative e-commerce. International Journal of Business Process Integration

and Management, 1(1) (2005) 39

238

http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

BIBLIOGRAPHY

[235] Y-S. Yeh, T-Y. Huang, H-Y. Lin, and Y-H. Chang. A Study on Parallel RSA

Factorization. Journal of Computers, 4(2), pp. 112–118 (2009) 273

[236] H. Zhang, M. Kudo, K. Matsuura, and H. Imai. A model for signature revoca-

tion. International Symposium on Information Theory and Its Applications (ISITA

2002), Xi’an, PRC, pp. 455–458 (2002) 55

[237] J. Zhou and D. Gollmann. A Fair Non-repudiation Protocol. IEEE Symposium

on Research in Security and Privacy, pp. 55–61 (1996) 11, 39

[238] J. Zhou and D. Gollmann. Evidence and Non-repudiation. Journal of Network

and Computer Applications, 20(3), pp. 267–281 (1997) 4, 34, 35

[239] L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard Acoustic Emanations Revisited.

ACM Conference on Computer and Communications Security, pp. 373–382 (2005)

269

[240] F. Zumbiehl. Collisions in PDF Signatures (2010). Available at http://

pdfsig-collision.florz.de/ 278

239

http://pdfsig-collision.florz.de/
http://pdfsig-collision.florz.de/

BIBLIOGRAPHY

240

Appendix A

Publications and Patents

The following list contains the references to the papers that resulted from this thesis

and that have been published in scientific journals and conferences. The publications

are listed following a chronological order:

1. Jorge L. Hernández-Ardieta, Ana Isabel González-Tablas, y Benjamı́n Ramos

Álvarez. Protocolo de intercambio justo para comercio electrónico basado en

poĺıticas de firma. Actas del II Simposio sobre Seguridad Informática SSI’07

(CEDI 2007), pp. 249–256, Editorial Thomson. Zaragoza (2007)

2. J. L. Hernández-Ardieta, A. I. González-Tablas, y B. Ramos. Repudio de firmas

electrónicas en Infraestructuras de Clave Pública. Actas de la X Reunión sobre

Criptoloǵıa y Seguridad Informática (X RECSI 2008), pp. 595–606. Salamanca

(2008)

3. Jorge L. Hernandez-Ardieta, Ana I. Gonzalez-Tablas, and Benjamin Ramos. An

Optimistic Fair Exchange Protocol based on Signature Policies. Computers &

Security 27(7-8), pp. 309–322. Elsevier (Eds.) (2008) [JCR 2008:1,028]

4. Jorge L. Hernandez-Ardieta, Ana I. Gonzalez-Tablas, and Benjamin Ramos. For-

mal Validation of OFEPSP+ with AVISPA. Joint Workshop on Automated Rea-

soning for Security Protocol Analysis and Issues in the Theory of Security, LNCS

5511, pp. 124–137. Springer-Verlag (2009)

5. Jorge L. Hernandez-Ardieta, Ana I. Gonzalez-Tablas, Benjamin Ramos, and Ar-

turo Ribagorda. On the Need to Divide the Signature Creation Environment.

International Conference on Security and Privacy (SECRYPT 2009), pp. 375–

379. Milan (2009)

6. Jorge L. Hernandez-Ardieta, Ana I. Gonzalez-Tablas, Benjamin Ramos, and Ar-

turo Ribagorda. Extended Electronic Signature Policies. 2nd ACM International

241

A. PUBLICATIONS AND PATENTS

Conference on Security of Information and Networks (SIN 2009), pp. 268–277,

ACM Press. North Cyprus (2009)

7. Jorge L. Hernández-Ardieta, Ana Isabel González-Tablas, Benjamı́n Ramos Álvarez,

y Arturo Ribagorda. Aumento de la Fiabilidad de Evidencias Digitales mediante

la División del Entorno de Firma en un Protocolo de Intercambio Justo. V Con-

greso Iberoamericano de Seguridad Informática (CIBSI 2009). Montevideo (2009)

8. Jorge López Hernández-Ardieta, Ana Isabel González-Tablas, y Benjamı́n Ramos.

Taxonomı́a de ataques a entornos de creación de firmas electrónicas. Actas de

la XI Reunión sobre Criptoloǵıa y Seguridad Informática (XI RECSI 2010), pp.

85–90. Tarragona (2010)

Finally, the patent application which results were generated in the framework of

the current thesis is quoted.

1. Jorge López Hernández-Ardieta, Fernando Hernández Álvarez, and Carlos Jiménez

Suárez. Systems and Methods for Using Cryptographic Keys. Application num-

ber: US 12/424324. Priority date: 15/04/2009

242

Appendix B

Classified Attacks on Digital

Signatures

This Appendix includes 112 attacks on digital signatures that have been classified using

the taxonomy and method of classification proposed in Chapter 6.

The surveyed attacks are a mix of real-world attacks on specific commercial products

and devised theoretical attacks that could be put into practice. Some of the 31 attacks

considered on the verification stage are firstly proposed here.

A representative name, the reference to the attack, a short description and possible

countermeasures are provided for each classified attack. It is important to remark that,

when a countermeasure is provided, it has been considered the information given by

the author of the attack and the specific conditions of the attack itself. Therefore, it

should not be concluded that the countermeasure is of general applicability, and thus

it should be evaluated on a case-by-case basis.

243

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Name: Dali attack
Source: The Dali Attack on Digital Signature [43]
Description: Attack based on the capability of a file of having a static polymor-

phic behavior. The attacker modifies the document to be signed
to include a secondary content different than the purported one.
Thanks to certain formats tagging, the content shown to the
verifier varies depending on the file extension, and thus the ap-
plication chosen to open the file. The attack is limited to the
inclusion of HTML as the malicious secondary content.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.1: Hidden code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Inclusion of the signed attribute content-type in the electronic
signature format (e.g. CAdES, XAdES)

Name: Enhanced Dali attack
Source: Fortifying the Dali Attack on Digital Signature [44]
Description: Attack that enhances the Dali Attack to permit the usage of tiff

and PDF formats for the contents inserted in the document to
be signed.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.1: Hidden code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Use of PDF/A formats. Use of PDF Advanced Electronic Signa-
ture (PAdES) formats. Inclusion of the signed attribute content-
type in the electronic signature format (e.g. CAdES, XAdES)

Name: Cut and paste attack
Source: Cut and paste attacks with Java [150]
Description: Attack focused on using a malicious applet to modify regions of

the visualization area of a web browser while surfing through the
Internet. This attack could be mounted to modify a malicious
document visualized by the signer before computing the signature
in order to fit with the expected one.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

244

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: Disable Java Virtual Machine

Name: PIN retrieval
Source: Trojan Horse Attacks on Software for Electronic Signatures [221]
Description: The attack is carried out on two of the most deployed signature

software in Germany. The attacker obtains a handle to the PIN
edit control in a Windows operating system environment. Once
the user has entered the PIN, the attacker is able to retrieve
it and start as many signing processes as desired. The authors
provide an example in Delphi source code.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.3:
Endpoint compromise

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Avoid handles belonging to applications different than the one
that created the PIN window. Use of specialized hardware (e.g.
keyboard with an integrated smart card reader)

Name: PIN retrieval in email signing software
Source: Trojan Horse Attacks on Software for Electronic Signatures [221]
Description: The same attack as in PIN retrieval is carried out on two prod-

ucts that consist of a signature plug-in integrated in a widely
used email client software. The attacker is able to capture the
PIN or password entered by the user.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.3:
Endpoint compromise

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Use of a smart card with specialized hardware (e.g. keyboard
with an integrated smart card reader)

Name: PIN retrieval (with keypad)
Source: Trojan Horse Attacks on Software for Electronic Signatures [221]

245

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: In this case, the PIN retrieval attack is performed on a commer-
cial off-the-shelf product that implements a keypad for the secure
input of the PIN. The attacker is able to access the permutation
information, and thus is able to retrieve the PIN selected by the
user.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.3:
Endpoint compromise

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Use of a smart card with specialized hardware (e.g. keyboard
with an integrated smart card reader)

Name: Modification of the secure viewer’s presentation
Source: Trojan Horse Attacks on Software for Electronic Signatures [221]
Description: This attack violates the What-You-See-Is-What-You-Sign

(WYSIWYS) principle. The attack consists in manipulating the
information shown by the secure viewer of a commercial off-the-
shelf signature software. As a result, the attacker is able to mod-
ify the data to be signed while deceiving the user during the last
confirmation step. The authors provide an example in Delphi
source code.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.3: DTBS modification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: -

Name: Modification of the DTBSR
Source: Trojan Horse Attacks on Software for Electronic Signatures [221]
Description: The attacker basically monitors the communication between the

signature software and the smart card in order to modify the
hash of the data sent to the card (the DTBSR).

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.4: DTBSR modification

Target(s): D3-CAT2: Software→ D3-CAT2.2: Driver→ D3-CAT2.2.3: SS-
CDev driver

Countermeasures: Implement a communication protocol compliant with ISO 7816
security measures

Name: Mail forgery

246

Source: Practical Security Aspects of Digital Signature Systems [178]
Description: The attacker aims at replacing the content of an email with ar-

bitrary data, retaining the validity of the signature. For this
purpose, the attacker launches an SMTP proxy on the compro-
mised computer to intercept the communication between the mail
client and the mail server in order to change the mail content.
In order to perform the Man-In-The-Middle (MITM) attack, the
attacker changes the preference settings of the mail client (Thun-
derbird in this case) such that the connection to the mail server
is redirected to the proxy. The attacker also uses a specific tool
called detours for binary interception of Win32 functions, and
which permit him to load a dynamic link library (DLL) with the
email client. This DLL is then used to intercept the function
that initiates the digital signature process, replacing the content
being signed with the malicious document.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: -

Name: Secure Viewer manipulation (1)
Source: Practical Security Aspects of Digital Signature Systems [178]
Description: In this attack, the secure viewer component delivered for use of

the Austrian citizen card (trustview component of trustdesk basic
suite) is compromised. The attack consists of two steps. In the
first step, detours tool (see previous attack) is used to modify
the Windows file access routines in the Windows runtime library
in a manner that trustview shows a file different than the one
for which the signature request has been made. In the second
step, the attacker alters the functions that display the content
to be signed in order to show the original one, that is, the one
intended by the user. For this purpose, the attacker obtains a
window handle to the HTML control used by trustview, being
able to edit the content shown therein.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: -

Name: Secure Viewer manipulation (2)
Source: Practical Security Aspects of Digital Signature Systems [178]

247

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: In this case, the same attack as in Secure Viewer manipulation (1)
is carried out on the secure viewer component of HotSign product,
also delivered for use of the Austrian citizen card. Here, though
no HTML control object is used, the attacker is still capable of
changing the appearance of the shown document by obtaining a
handler to the secure viewer window and subsequently drawing
directly over the window context.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: -

Name: Secure viewer compromise (1)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Deutsche Telekom T-Telesec Signet

1.6.0.4 product. The attack does not need administrator priv-
ileges and relies on design flaws, not implementation ones. In
particular, by using Windows messages the Signet software can
be made to display a different information regarding the data
to be signed. By placing an inactive window at the top of the
z-order with a fake button representing the execution of the se-
cure viewer, the user can be tricked into clicking on it, allowing
the malware to show the purported document to be signed while
sending a different one to the SCD. In addition, it is possible to
draw on the viewer’s presentation surface, allowing an attacker
that has modified the document to be signed to represent it in
its original form.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: PCS/SC card reader communication potential compromise (1)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Deutsche Telekom T-Telesec Signet

1.6.0.4 product. The attack does not need administrator priv-
ileges and relies on design flaws, not implementation ones. In
particular, the attacker installs a modified WINSCARD.DLL in
the Signet’s folder.

248

This file is thus loaded and executed by Signet, giving access to
its address space and permitting arbitrary malicious actions, like
DTBSR modification.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.4: DTBSR modification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Make the signing software to verify the signed code of every mod-
ule used

Name: Secure viewer compromise (2)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on IT Solution trustDesk standard 1.2.0

product. The attack does not need administrator privileges and
relies on design flaws, not implementation ones. In particular,
the attack draws on the secure viewer’s presentation to deceive
the user respecting the data to be signed, while the information
to be sent for signing differs.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: PCS/SC card reader communication potential compromise (2)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on IT Solution trustDesk standard 1.2.0

product. The attack does not need administrator privileges and
relies on design flaws, not implementation ones. In particular,
the attacker installs a modified driver library file. Upon access-
ing the card reader trustDesk loads and executes the modified
device driver, giving access to the software’s address space and
permitting arbitrary malicious actions, like DTBSR modification.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.4: DTBSR modification

Target(s): D3-CAT2: Software→ D3-CAT2.2: Driver→ D3-CAT2.2.3: SS-
CDev driver

Countermeasures: Make the signing software to verify the signed code of every mod-
ule used

249

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Name: Secure viewer compromise (3)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on D-Sign matrix/digiSeal 3.0.1 prod-

uct. The attack does not need administrator privileges and re-
lies on design flaws, not implementation ones. In particular, the
attack modifies the viewer’s presentation surface without detec-
tion to deceive the user respecting the data to be signed, while
the information to be sent for signing differs.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: PCS/SC card reader communication potential compromise (3)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on D-Sign matrix/digiSeal 3.0.1 prod-

uct. The attack does not need administrator privileges and relies
on design flaws, not implementation ones. As secure PIN en-
try is not the default option, the attacker can change the reader
configuration and specify a new card terminal driver. Thereby,
it is possible to load arbitrary malicious code in the software’s
address space, and perform the execution of malicious actions,
like DTBSR modification.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.4: DTBSR modification

Target(s): D3-CAT2: Software→ D3-CAT2.2: Driver→ D3-CAT2.2.3: SS-
CDev driver

Countermeasures: Make the signing software to verify the signed code of every mod-
ule used

Name: Manipulated presentation of data to be signed
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Ventasoft venta-sign 2.0.0.968 prod-

uct. The attack does not need administrator privileges and relies
on design flaws, not implementation ones. The product does not
provide a secure viewer. The attack draws on the application’s
presentation surface, showing the user a different file name and
file information, while the information to be sent for signing dif-
fers.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

250

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: Secure viewer compromise (4)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on 2B Secure FILE 1.0 product. The

attack does not need administrator privileges and relies on design
flaws, not implementation ones. In particular, the attack modi-
fies the secure viewer’s presentation surface without detection to
deceive the user respecting the data to be signed (very similar to
Secure viewer compromise (1) attack).

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: Secure viewer compromise (5)
Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Ultimaco SafeGuard Sign & Crypt

for Office 3.4.1 product. The attack does not need administrator
privileges and relies on design flaws, not implementation ones. In
particular, the attack modifies the secure viewer’s presentation
surface without detection to deceive the user respecting the data
to be signed, while the information to be sent for signing differs.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.2: Content mod-
ification

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Fix data before it becomes obvious to an attacker that the data
is relevant for signing

Name: False positives in XML
Source: What You See is Not Always What You Sign [130]

251

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: The attack consists in modifying external parts of the signed
XML document (e.g. a referenced schema or DTD). In particular,
the attack shown modifies the ATTLIST of the DTD. While the
syntactic form remains the same, the semantic varies.

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.1: External content
Target(s): D3-CAT5: Information → D3-CAT5.1: Document
Countermeasures: Application of canonicalization algorithms. Addition of all in-

volved content, including referenced external content, in the
DTBS

Name: Font type manipulation - Fonts substitution
Source: What You See is Not Always What You Sign [130]
Description: An attacker can make a document have a different representation

(semantic) by applying customized font types. If these font types
are explicitly designed by the attacker for the document proces-
sor of the signer, and thus are not available during the verifica-
tion stage, the glyph of certain characters can vary, changing the
meaning of the document while maintaining the integrity of the
signature. Though the authors presented this attack from the
viewpoint of deceiving the verifier, this attack can be applied to
deceive the signer, as described herein.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT1: Environment manipulation
Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-

CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Use of formats (e.g. PDF) that include the fonts definitions inside
the content of the document

Name: Inconsistent handling of HTML table tags
Source: What You See is Not Always What You Sign [130]
Description: Web browsers interpret HTML and Javascript code in a different

manner. Consequently, the same HTML code can be shown in
different ways depending on the web browser used.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.2: Active code

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

252

Name: Substitution of Office document by external content using macros
Source: Electronic Documents and Digital Signatures [131]
Description: When opening the signed document, some active code (e.g. a

macro programmed in Visual Basic for Applications for a Word
document or an Excel spreadsheet) included in it substitutes the
content of the document by an external content controlled by the
attacker. This attack is feasible on Microsoft Office formats. As
the signature is verified against the initial object, the signature
integrity is not corrupted.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.2: Active code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Substitution of Office document by external content referenced
by links

Source: Electronic Documents and Digital Signatures [131]
Description: Office documents allow users to insert material from remote doc-

uments by reference. As a result, the document only manages
a link to an external object, which is loaded on demand. This
characteristic permits an attacker to manipulate the linked data
without corrupting the signature integrity.

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.1: External content
Target(s): D3-CAT5: Information → D3-CAT5.1: Document

D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of links to external content in the document
to be signed

Name: External queries in Excel
Source: Electronic Documents and Digital Signatures [131]
Description: Excel includes features to make explicit queries to remote files.

The attacker can select an option to get external data and set
up a query to a remote text file. The text file should be written
with tab spaces between words to specify different fields in the
spreadsheet. By right-clicking on the cell and selecting Data
Range Properties, the attacker can configure the query to update
on open or even regularly (in the background).

253

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.3: Linked content

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Substitution of Office document content by means of fields
Source: Electronic Documents and Digital Signatures [131]
Description: Several attacks can be performed using the field feature in some

Office formats, like Word or Excel. Fields like TIME, USER-
NAME, etc. can make the visualization of a document content
vary according to conditions controlled by the attacker. For in-
stance, depending on the date when a document is opened or the
user that opens the document, a piece of text can take one of sev-
eral different possibilities. The content dependent on a field can
be updated automatically in certain versions of Microsoft Word
or explicitly via a macro.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.1: Hidden code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Substitution of PDF content by means of javascript
Source: Electronic Documents and Digital Signatures [131]
Description: The attacker can use the form toolbar to create a form field, and

then add Javascript code in its calculate field to change the value
of the field according to the date.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.2: Active code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

254

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Modification of HTML email content via Javascript
Source: Electronic Documents and Digital Signatures [131]
Description: An attack that modifies the content of an email formatted as

HTML is performed by using the document.write() Javascript
function and the current date.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.2: Active code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Modification of HTML email content via embedded image
Source: Electronic Documents and Digital Signatures [131]
Description: The attacker embeds an image in a HTML formatted email and,

in conjunction with Javascript, is able to modify the visualized
content of the signed email.

Goal: D1-CAT1: Deceive the signer to sign a document different than
the intended one or under unintended conditions

Method: D2-CAT2: Modification prior to signature computation → D2-
CAT2.1: Document modification→ D2-CAT2.1.1: Dynamic con-
tent inclusion → D2-CAT2.1.1.2: Active code

Target(s): D3-CAT5: Information → D3-CAT5.1: Document
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Avoid the inclusion of dynamic content in the document to be
signed

Name: Signature creation data retrieval from low-security keys
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: Internet Explorer Web browser relies on Windows keystore and

Cryptographic Service Provider (CSP) to store the private keys
imported therein. Microsoft’s CSP publishes a function called
CryptExportKey which permits to directly obtain the private key
from a keystore. A low-security key, which is the configuration
by default, is a key imported in Internet Explorer which is not
password-protected. Consequently, and based on previous facts,
an attacker that gains access to the user’s account or is able to
execute malicious code with the user’s privileges will the able to

255

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

access the private key. The attacker could even export the private
key for further usages.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.2:
Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Use stronger configuration settings

Name: Use of low-security keys
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: This attack is based on the same motivation as the attack Sig-

nature creation data retrieval from low-security keys. However,
in this case the attacker does not retrieve the signature creation
data but just performs as many signatures as desired without the
user consent and knowledge. This attack is an alternative if the
key was set to non-exportable.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function →
D2-CAT4.2: Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Use stronger configuration settings

Name: Signature creation data retrieval from exportable medium-
security keys

Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: When a medium-security key is to be accessed (for signing or

export), a warning is shown to the user, who must confirm the
operation. This attack captures the warning event, hiding it
to the user, during the key export operation (the key must be
set as exportable). To achieve that, the attacker performs an
API hijacking in which a function call made by the Internet Ex-
plorer process to the system Windows CryptoAPI is intercepted
by a malicious DLL previously injected via a Windows Hook.
Thereby, the attacker is able to hijack the call which displays the
warning window, disabling it.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.2:
Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: -

256

Name: Use of medium-security keys
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: This attack applies the same strategy as the attackSignature cre-

ation data retrieval from exportable medium-security keys. How-
ever, in this case the attacker does not retrieve the signature
creation data but just performs as many signatures as desired
without the user consent and knowledge. This attack is an alter-
native if the key was set to non-exportable.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function →
D2-CAT4.2: Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: -

Name: Signature creation data retrieval from high-security keys (in un-
recommended configuration)

Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: A high-security key requires the user to enter the associated pass-

word (SAD) each time the key is to be used or exported. How-
ever, if the user checked the box marked “Remember password”,
the level of the key is downgraded to low-security, enabling the
attacker to perform the same attack as in Signature creation data
retrieval from low-security keys.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.2:
Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Do not select “remember password” in the configuration settings

Name: Use of high-security keys (in unrecommended configuration)
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: The attacker makes use of the same highly unrecommended

configuration as in the attack Signature creation data retrieval
from high-security keys (in unrecommended configuration), being
able to perform the same attack as in Use of low-security keys.
This attack is an alternative if the key was set to non-exportable.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function →
D2-CAT4.2: Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Do not select “remember password” in the configuration settings

257

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Name: Signature creation data retrieval from exportable high-security
keys

Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: The attack is based on the same strategy as in Signature creation

data retrieval from exportable medium-security keys. In this case,
the attacker captures the invocation to the function that shows
a window asking for a password each time the key is to be used.
Once obtained the first time, the attacker is able retrieve the
private key for further usages.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.3: Unauthorized access to the SCDev → Compro-
mise of the signer authentication data (SAD) → D2-CAT4.1.2:
SAD interception → D2-CAT4.1.2.2: Interception in interpro-
cess/entities communication

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.3: CSP

Countermeasures: The authors indicate that there is no countermeasure for this
security issue

Name: Use of high-security keys
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: In case the key is set as non-exportable, the attacker can follow-

ing the same actions as in Signature creation data retrieval from
exportable high-security keys to compromise the access password.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.2:
Interception in interprocess/entities communication

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.3: CSP

Countermeasures: The authors indicate that there is no countermeasure for this
security issue

Name: Use of high-security keys during the same session
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: This attack relies on a vulnerability by design in the CryptoAPI.

In the context of Internet Explorer Web browser, once the Cryp-
toAPI has authenticated a user when accessing a high-security
key, subsequent accesses fail to request for the password. Us-
ing a malicious code that makes the same sequence of calls to
the CryptoAPI as Internet Explorer, the attacker can perform
as many signing operations as desired once the password has
been provided by the user, and providing that the browser is not
restarted.

258

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function →
D2-CAT4.2: Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Close the Web browser once the desired operation is performed.
Clear the SSL State in the Web browser configuration

Name: Use of keys stored in cryptographic tokens
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: The attack applies the same strategy as in Use of high-security

keys for keys stored in a particular external cryptographic token.
Goal: D1-CAT2: Unauthorized use of the signature creation data

(SCD)
Method: D2-CAT4: Unauthorized invocation of the signing function

→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.2:
Interception in interprocess/entities communication

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.3: CSP

Countermeasures: -

Name: Deception to use keys stored on cryptographic tokens
Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: This attack makes use of social behavior to perform signatures

on behalf of the user without his consent and knowledge. When
a cryptographic token such as the Spanish electronic Identity
Card (eDNI), Spyrus Rosetta USB and many others requests to
user to insert the PIN or password in every access to the private
key or protected areas of the internal file system, the user gets
used to insert the credentials several times for a single operation
(i.e. authenticate in a Web site, sign a document, etc.). The
attacker will just request the user to enter the SAD in the middle
of a normal operation or unexpectedly, and there will be a non-
negligible probability for the user to do that.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.1:
Compromise of the signer authentication data (SAD) → D2-
CAT4.1.1: Social engineering

Target(s): D3-CAT4: Human user → D3-CAT4.1: Signer
Countermeasures: Apply a different design where the SAD is not required so many

times. Caching the SAD during a single operation may lead to
the attack Using cached SAD to perform malicious signatures

Name: Using cached SAD to use keys stored on cryptographic tokens

259

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Source: Keyjacking: the surprising insecurity of client-side SSL [164]
Description: In this attack, the attacker can perform as many signatures as

desired if the CSP of a cryptographic token is configured to use
the key for a specified time interval without asking for permission.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function →
D2-CAT4.2: Authentication Bypass

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.3: CSP

Countermeasures: Applying a different design where the SAD is required for every
single access to the key may lead to the attack Deception to use
keys stored on cryptographic tokens

Name: Signature creation data retrieval from password-protected files
Source: BreakMS - Break Microsoft Private Key Encryption with a dic-

tionary attack [88, 89]
Description: This attack exploits several design and implementation vulnera-

bilities found in PKCS12 / PFX file format to perform a low-cost
dictionary attack to discover the password used to protect the file
and further retrieve the private key.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.1:
Compromise of the signer authentication data (SAD) → D2-
CAT4.1.3: Guessing

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Redesign and careful implementation of PKCS12 / PFX format

Name: Unauthorized usage of platform resources by a malicious Applet
in a Java-enabled card

Source: Software attacks on smart cards [84]
Description: If the Java Card where the Applet is loaded does not imple-

ment an access controller, then a Trojan horse embedded in the
Applet can perform malicious operations. If there is no domain
separation between simultaneous applets, the malicious one could
extract sensitive information managed by another, like the PIN
code, or modify critical data like the number of authentication
attempts. These attacks could later derive in signature forgeries.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.2:
Interception in interprocess/entities communication

260

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: Correct design and implementation of Java Card, specially Java
Virtual Machine. Correct design and implementation of applets.
Use of access controller. Use of shareable interfaces between ap-
plets (domain separation enforcement). More tips can be found
in [84]

Name: PIN phishing and Fraudulent signatures
Source: Vulnerabilities of PKI based Smartcards [61]
Description: The attacker reads the signer’s authentication data (PIN of the

smart card) entered by the user in the keyboard by means of a
keylogger. Once the attacker has compromised the SAD, it is
able to access the signing function of a smart card without the
user knowing.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.2:
Interception in interprocess/entities communication

Target(s): D3-CAT2: Software → D3-CAT2.2: Driver → D3-CAT2.2.1:
Keyboard driver

Countermeasures: Use of secure I/O between the user and the Java Card: PIN
entry from a cellular phone; separate hardware channel between
the PKI card and a special I/O device that handles the user
inputs; match-on-cards with own display

Name: Remote control of PKI Card
Source: Vulnerabilities of PKI based Smartcards [61]
Description: An attacker is able to remotely request signing operations on the

smart card once the user has unlocked it.
Goal: D1-CAT2: Unauthorized use of the signature creation data

(SCD)
Method: D2-CAT4: Unauthorized invocation of the signing function →

D2-CAT4.2: Authentication Bypass
Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-

CAT2.1.2: Related application → D3-CAT2.1.2.3: CSP
Countermeasures: -

Name: Timing Analysis attack in controlled environments
Source: Timing attacks on Implementations of Diffie-Hellman, RSA, DSS

and Other Systems [138]
Description: This was the first designed timing attack, which implementations

were successful against Diffie-Hellman, RSA and DSS cryptosys-
tems.

261

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

These attacks were carried out in an isolated computing environ-
ment where the measured time could not be masked by delays
provoked by processes running in the background.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.1:
Timing Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Adapted blinding signatures can prevent attackers from knowing

the input to the modular exponentiation function, with only low
performance decrease [138]

Name: Timing Analysis attack using the Chinese Remainder Theorem
Source: A Timing Attack against RSA with the Chinese Remainder The-

orem [208]
Description: In this attack, a RSA-modulus is factorized providing that the

exponentiation with the secret exponent uses the Chinese Re-
mainder Theorem and Montgomery’s algorithm.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.1:
Timing Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Remote Timing Analysis attack
Source: Remote Timing Attacks are Practical [41]
Description: Brumley and Boneh showed that remote attacks on real applica-

tions over a local network and running in general software sys-
tems are possible. In this case, they devised a timing attack
against OpenSSL, guessing the private key used by the Web
server for authenticating itself during the SSL handshake stage.
This has been quite an important research since timing attacks
are now possible although noisy intermediate elements such as
network routers and background processes interact during the
attack.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.1:
Timing Analysis

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Enable the blinding feature of OpenSSL

Name: Improved Remote Timing Analysis attack

262

Source: Improving Brumley and Boneh Timing Attack on Unprotected
SSL Implementations [4]

Description: The authors improve the Remote Timing Analysis attack effi-
ciency by a factor of more than ten. In particular, the attack
exploit the timing behavior of Montgomery multiplications in the
table initialization phase, which increases the number of multi-
plications that provide useful information to reveal one of the
prime factors of RSA moduli.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.1:
Timing Analysis

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Enable the blinding feature of OpenSSL

Name: Simple Power Analysis attack (SPA)
Source: Differential Power Analysis [139]
Description: This type of power analysis attack is imperceptible to the user

and can be successfully performed by using simple and cheap
equipments. It only needs one or few measurements of power
consumption signals to retrieve the private key stored in the cryp-
tographic device.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Make the power consumption of the cryptographic device in-

dependent of the signal values at the internal circuit nodes by
either randomizing or flattening the power consumption. How-
ever, these techniques do not assure the device to be completely
secure against these attacks, and instead they increase the re-
quired number of measurements [225]. If the attacker has access
to the device for performing an enough number of operations,
these countermeasures are useless.

Name: Mono-bit Differential Power Analysis attack (DPA)
Source: Differential Power Analysis [139] and An overview of side channel

analysis attacks [147]
Description: This type of power analysis attack is a statistical approach that

examines a large number of power consumptions signals to re-
trieve secret keys. In particular, the mono-bit DPA analyzes the
intermediate values of one bit.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

263

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Multi-bit Differential Power Analysis attack (DPA)
Source: Ways to Enhance DPA [32] and An overview of side channel

analysis attacks [147]
Description: The difference between this attack and Mono-bit Differential

Power Analysis attack (DPA) is that the former analyzes inter-
mediate values of a set of several bits.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: First-order Differential Power Analysis attack (DPA)
Source: Differential Power Analysis [139]
Description: In this case, the samples are observed at one instant of time.
Goal: D1-CAT2: Unauthorized use of the signature creation data

(SCD)
Method: D2-CAT5: Compromise of the signature creation data (SCD)

→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: High-order Differential Power Analysis attack (DPA)
Source: On Second-Order Differential Power Analysis [127]
Description: Contrary to First-order Differential Power Analysis attack

(DPA), this type of DPA attack analyzes the power consump-
tion signals at some instants of time.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Correlation Power Analysis attack (CPA)
Source: A proposition for Correlation Power Analysis enhancement [148]

and An overview of side channel analysis attacks [147]

264

Description: This type of attack consists of a technique based on the cor-
relation between the real power consumption of the device and
a certain power consumption model. DPA and CPA are based
on power consumption models, so their efficiency completely de-
pends on the chosen model. In case of wrongly modeling the
power consumption, the key obtaining is impossible. Besides,
these attacks need a large number of samples, and hence are not
very practical.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Template Power Analysis attack
Source: IPA: A New Class of Power Attacks [77], Template Attacks [48]

and An overview of side channel analysis attacks [147]
Description: This type of attack needs a reference device for executing a pro-

filing stage. In this stage, a large number of signals are obtained
from the reference device in order to learn how it works. During
the second stage, the key extraction stage, the key is obtained by
analyzing very few signals from the attacked device, improving
the applicability of the attack respecting other types of power
analysis attacks, like DPA or CPA. The reference device must be
identical or very closed to the attacked device for the attack to
work.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Stochastic Power Analysis attack
Source: A Stochastic Model for Differential Side Channel Cryptanalysis

[209] and An overview of side channel analysis attacks [147]
Description: This attack needs a reference device like the Template Power

Analysis attack. This attack uses a different strategy than the
template-based attack. For instance, during the profiling stage,
the power consumption is estimated by predefined functions, not
from actual measured signals.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.3:
Power Analysis

265

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Electromagnetic Emanation attack on RSA
Source: ElectroMagnetic Analysis (EMA): Measures and Counter-

measures for Smart Cards [195] and Electromagnetic Analysis:
Concrete Results [80]

Description: An attack to an RSA implementation was successfully carried
out, focusing on the RSA modular exponentiation performed in
a decapsulated smart card.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.2:
Electromagnetic Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Hardware countermeasures: metal layer addition to the chip; ac-

tive grid placement on top of the chip, in order to introduce more
noise into the EM field, blurring the emanations [162]

Name: Electromagnetic Emanation attack by using the channel capacity
information

Source: Evaluation of Information Leakage via Electromagnetic Emana-
tion and Effectiveness of Tempest [223]

Description: In this study, it is shown how to estimate the amount of informa-
tion leakage by using the value of channel capacity, that it, the
communication channel between the measured IT device and the
receiver. This IT device can be both a personal computer or a
smart card.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.2:
Electromagnetic Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures: Idem.

Name: A low cost Electronic Emanation attack on a smart card
Source: Low cost attacks on smart cards: The electromagnetic side-

channel[162]
Description: With this attack, it is demonstrated that performing EMA

attacks using limited technical knowledge as well as cheap re-
sources is possible. EM traces are successfully acquired from the
sample card, and an analysis software correctly identifies the key.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

266

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.2:
Electromagnetic Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
Countermeasures: Idem.

Name: Fault-based attack on RSA
Source: Fault-Based Attack of RSA Authentication [183]
Description: In this paper, a theoretical systematic fault-based attack on the

modular exponentiation algorithm for RSA is developed. Later
on, the authors carry out a practical and complete end-to-end
fault-attack on a microprocessor system, exploiting the vulnera-
bilities of an FPGA implementation of the system under attack
and which runs a flawed OpenSSL software implementation. The
authors inject transient faults in the target machine by regulating
the voltage supply of the system, not requiring access to the sys-
tem’s internal components but just proximity to it. The authors
are able to extract the 1024-bit RSA private key in approximately
100 hours.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT3: Hardware → D3-CAT3.1: SSCDev
D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.4: SCDev

Countermeasures:

Name: A Branch Prediction Analysis attack on RSA: Exploiting the
Predictor directly (Direct Timing Attack)

Source: Predicting Secret Keys via Branch Prediction [3]
Description: This is a type of microarchitectural side-channel attack called

branch prediction analysis (BPA) attack, by which the branch
prediction capability, common to all modern high-performance
CPUs, is exploited to know the private key used in a software
cryptographic algorithm. In particular, the penalty payed (extra
clock cycles) for a mispredicted branch can be used for cryptanal-
ysis of cryptographic primitives that employ a data-dependent
program flow. This attack relies on the fact that the predic-
tion algorithms are deterministic, and assume that the RSA im-
plementation employs Square-and-Multiply exponentiation and
Montgomery Multiplication. Though this attack is experimen-
tally carried out on a simple RSA implementation, the underlying
ideas can be used to develop similar attacks on different imple-
mentations of RSA and/or on other ciphers based upon ECC.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

267

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: A Branch Prediction Analysis attack on RSA: Forcing the BPU
to the Same Prediction (Asynchronous Attack)

Source: Predicting Secret Keys via Branch Prediction [3]
Description: In this attack it is assumed that the cipher runs on a simultaneous

multi-threading computer. The attacker can run a dummy pro-
cess simultaneously with the cipher process, but the two parallel
threads are isolated and share only the common Branch Predic-
tion Unit (BPU) resource. Also, the attacker does not need to
know any detail of the prediction algorithm., like in the previous
attack.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: A Branch Prediction Analysis attack on RSA: Forcing the BPU
to the Same Prediction (Synchronous Attack)

Source: Predicting Secret Keys via Branch Prediction [3]
Description: In this attack, the malicious process needs some sort of synchro-

nization with the simultaneous crypto-process. It is also assumed
that the RSA implementation employs Square-and-Multiply ex-
ponentiation. Any implementation of a cryptosystem is vulnera-
ble to this kind of attack if the execution flow is key-dependent,
including several implementations that had been considered to
be immune to certain types of of side-channel attacks.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: A Branch Prediction Analysis attack on RSA: Trace-driven
Attack against the BTB (Asynchronous Attack)

Source: Predicting Secret Keys via Branch Prediction [3]

268

Description: In this attack, it is assumed that the attacker can run a spy pro-
cess simultaneously with the cipher, but it does not need to be
synchronized with it. The same cryptographic implementations
vulnerable to the previous attack are vulnerable to this one. Fur-
thermore, this attack is much easier to be put in practice, and,
in the authors’ opinion, this attack puts many of the current
public-key implementations in danger.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: A Simple Branch Prediction Analysis attack on RSA
Source: On the Power of Simple Branch Prediction Analysis [2]
Description: This is a a BPA variation by which almost all of the RSA key

bits can be extracted during a single RSA operation.
Goal: D1-CAT2: Unauthorized use of the signature creation data

(SCD)
Method: D2-CAT5: Compromise of the signature creation data (SCD)

→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: An Instruction Cache Analysis attack on the RSA implementa-
tion of OpenSSL

Source: Yet another MicroArchitectural Attack: Exploiting I-cache [1]
Description: This attack exploits the behavior of the Instruction Cache - which

is used to reduce the average time to read instruction codes from
main memory - to extract sensitive information regarding the ex-
ecution of a cryptosystem. More specifically, this attack targets
the OpenSSL sliding Window exponentiation of its RSA imple-
mentation.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.2: Eavesdropping (side-channel) → D2-CAT5.2.4:
Microarchitectural Analysis

Target(s): D3-CAT2: Software → D3-CAT2.3: Operating system
Countermeasures: -

Name: PIN/Password recovering from keyboard acoustic emanations
Source: Keyboard Acoustic Emanations Revisited [239]

269

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: The authors built a prototype that can bootstrap a keyboard
acoustic recognizer from about 10 minutes of English text typ-
ing, using about 30 minutes of computation on an average desk-
top computer. After that, the prototype can recognize keystrokes
in real time, including random ones such as passwords, with an
accuracy rate of about 90%. The keystrokes must be typed by the
same person, with the same keyboard, under the same recording
conditions. These conditions can easily be satisfied by, for exam-
ple, placing a wireless microphone in the user’s work area or by
using parabolic microphones.
This attack could be mounted to compromise the signer’s authen-
tication data. As a result, it would be the earliest stage before
accessing the signature creation data or the signing function. As
such, this partial attack can be classified under the two methods
indicated below.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.3: Guessing
D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.1:
Compromise of the signer authentication data (SAD) → D2-
CAT4.1.3: Guessing

Target(s): D3-CAT3: Hardware → D3-CAT3.2: Computer → D3-
CAT3.2.4: Peripheral devices → D3-CAT3.2.4.2: Keyboard

Countermeasures: Ensure the physical security of the machine and the room. Use
of two-factor authentication (e.g. password and biometrics) to
access the signature creation data.

Name: Finding collisions in several MD3,MD5, HAVAL, RIPEMD and
SHA-0

Source: How to Break MD5 and Other Hash Functions [231]
Description: A new differential attack on several hash functions is described.

The attack, called modular differential, unlike most differential
attacks, uses modular integer subtraction as the measure instead
of the exclusive-or. In the case of MD3, the attack can find
a collision within less than a second, and can also find second
preimages for many messages. For MD5, it finds collisions in
about 15 minutes up to an hour computation time. As the attack
can be carried out following two different methods (collision or
second pre-image), the method of the attack could be classified
attending to both approaches.

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.2: Cryptanalysis → D2-CAT3.2.1: Hash function → D2-
CAT3.2.1.1: Collision attack

Target(s): D3-CAT1: Cryptography
Countermeasures: Use stronger hash functions.

270

Name: Finding MD5 collisions using tunnels
Source: Tunnels in hash functions: MD5 collisions within a minute [137]
Description: The author proposes a new strategy to find collisions in hash

functions named tunneling. Tunnels replace multi-message modi-
fication methods and exponentially accelerate collision search. In
particular, the author describe several tunnels in hash function
MD5. By using them, a MD5 collision is found in approximately
one minute on a standard notebook PC (Intel Pentium, 1.6 GHz).
This attack is a collision attack, since it finds two messages which
hash coincides. The method works for any initializing value. For
this attack to succeed, the attacker must trick the user to sign
one of the messages (possibly the message is aligned with the
user’s interests), and afterwards replace it by the fraudulent one
(see birthday attack [58])

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.2: Cryptanalysis → D2-CAT3.2.1: Hash function → D2-
CAT3.2.1.1: Collision attack

Target(s): D3-CAT1: Cryptography
Countermeasures: Use stronger hash functions.

Name: Using Expandable Messages to Find Second Preimages
Source: Second preimages on n-bit hash functions for much less than 2n

work [134]
Description: The authors describe a generic way to carry out long-message

second preimage attacks, despite the Damgard-Merkle strength-
ening done on all modern hash functions (including SHA-1). The
work required to achieve the attack is substantially lower than the
reference one (2n). For instance, using SHA-1 as an example, the
attack can find a second preimage for a 260 byte message in 2106

work, rather than the previously expected 2160 work. Though the
attack is theoretical (e.g. the messages for which second preim-
ages may be found are generally impractically long), the authors
showed that an n-bit iterated hash function cannot provide the
expected second-preimage resistance for long messages. As a sec-
ond preimage attack, the attacker would be able to compose a
malicious document which hash value matched the one of the
signed document.

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.2: Cryptanalysis → D2-CAT3.2.1: Hash function → D2-
CAT3.2.1.3: Second preimage attack

Target(s): D3-CAT1: Cryptography
Countermeasures: Use stronger hash functions.

Name: Herding attack on hash functions
Source: Herding Hash Functions and the Nostradamus Attack [133]

271

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: The authors define a property of a hash function, Chosen Target
Forced Prefix (CTFP) preimage resistance, which is both impor-
tant for real-world applications of hash functions, and dependent
on collision resistance of the hash function. More specifically,
the described attack, called the herding attack, affects Damgard-
Merkle hash functions in a way that the attacker who can find
many collisions on the hash function by brute force can first pro-
vide the hash of a message, and later “herd” any given starting
part of a message (P) to that hash value by the choice of an
appropriate suffix (S). This attack can be considered a practi-
cal improvement of Using Expandable Messages to Find Second
Preimages where the resulting message can be of a reasonable
size. The authors provide concrete examples of carrying out the
attack. One of them, named Tweaking a Signed Document, con-
siders the case where a signer can later produce a modified mes-
sage while still resulting in the same hash. As stated by the
authors, many applications of hashing for signatures which are
not vulnerable to attack by straightforward collision-finding tech-
niques are broken by an attacker who can violate CTFP preimage
resistance. When the CTFP definition is relaxed somewhat the
attacks become still cheaper and more practical.
For instance, if the attacker has control over the format of P -
easy if the attacker intercepts the document to be signed, giving
him prior knowledge of the full (large) set of possible P strings
that might be presented (this is possible in certain transactions
where the skeleton of the DTBS is fixed and just few parts of the
document can vary). This is a preimage attack since the attacker
manipulates part of the data entered in the hash function in order
to obtain the desired hash value.

Goal: D1-CAT3: Replace signed information
Method: D2-CAT3: Modification post signature computation → D2-

CAT3.2: Cryptanalysis → D2-CAT3.2.1: Hash function → D2-
CAT3.2.1.2: Preimage attack

Target(s): D3-CAT1: Cryptography
Countermeasures: Use stronger hash functions.

Name: Preimage attack on RIPEMD
Source: Preimage Attack on Hash Function RIPEMD [230]
Description: The first preimage attack on the RIPEMD hash function is des-

cribed. Three variants are shown: an attack on the compression
function of the 26-step reduced RIPEMD, with complexity 2110

compression function computations; an attack on the 26-step re-
duced RIPEMD with complexity 2115.2 instead of 2128; and an
attack on 29 steps with the same complexity. Furthermore, the
complexity of the preimage attack on the full RIPEMD without
the padding rule is reduced to 2127, which optimizes the com-
plexity order to brute-force attack.

Goal: D1-CAT3: Replace signed information

272

Method: D2-CAT3: Modification post signature computation → D2-
CAT3.2: Cryptanalysis → D2-CAT3.2.1: Hash function → D2-
CAT3.2.1.2: Preimage attack

Target(s): D3-CAT1: Cryptography
Countermeasures: Use stronger hash functions.

Name: Parallel RSA factorization using the Multiple Polynomial
Quadratic Sieve (MPQS)

Source: A Study on Parallel RSA Factorization [235]
Description: In this paper, a factorization of a 100-digit RSA modulus into

the former primer numbers is presented. The experimental result
shows that it takes 6.6 days for factoring the 100-digit number
using the enhanced MPQS by 32 workstations.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.4: Cryptanalysis → D2-CAT5.4.1: Asymmetric algo-
rithm

Target(s): D3-CAT1: Cryptography
Countermeasures: Use large RSA key lengths (currently recommended 1024 bits

and above).

Name: Integer factorization with TWINKLE
Source: Analysis and optimization of the TWINKLE factoring Device

[153]
Description: TWINKLE (The Weizmann Institute Key Locating Engine) is an

optoelectronic device designed to be capable of factoring large in-
tegers by speeding up the sieving step of the Quadratic Sieve and
Number Field Sieve factoring algorithms. The authors consider
that a TWINKLE-assisted factorization of a 768-bit number is
feasible in about 9 months using a set of 80.000 standard Pentium
II PC’s and 5.000 TWINKLE devices. The advances in comput-
ers since 2000 let us foresee that the time needed to factoring
large numbers would imply a bound lower than 9 months.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.4: Cryptanalysis → D2-CAT5.4.1: Asymmetric algo-
rithm

Target(s): D3-CAT1: Cryptography
Countermeasures: Use large RSA key lengths (currently recommended 1024 bits

and above).

Name: Integer factorization with TWIRL
Source: Special-Purpose Hardware for Factoring: the NFS Sieving Step

[212]

273

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: As the authors comment, it is commonly claimed that 1024-bit
RSA keys are safe in a medium term (15 years, maybe more),
since when applying the Number Field Sieve (NFS) to such com-
posites both the sieving step and the linear algebra step would
be unfeasible. However, the introduction of special-purpose hard-
ware architectures for NFS, like TWINKLE or TWIRL, has re-
duced the predicted cost of factoring 1024-bit numbers by sev-
eral orders of magnitude. The authors estimate that factoring a
1024-bit integer using TWIRL - the evolution of TWINKLE (see
Integer factorization with TWINKLE) - would be possible in one
year at the cost of a few dozen million US dollars.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.4: Cryptanalysis → D2-CAT5.4.1: Asymmetric algo-
rithm

Target(s): D3-CAT1: Cryptography
Countermeasures: Use even larger RSA key lengths (2048 or 4096 bits).

Name: Signature application substitution
Source: This thesis.
Description: This kind of attack tries to compromise sensitive data by replac-

ing the SCA by a fake one. If the user does not notice the differ-
ence, he will have completely felt into the hands of the attacker.
Depending on the purpose of the attack and the nature of the
SCD, the attacker would be able to compromise either the SAD
or the SCD itself. As such, two methods of attacks are applied.

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.3: Unauthorized access to the SCDev→ D2-CAT5.3.1:
Compromise of the signer authentication data (SAD) → D2-
CAT4.1.2: SAD interception → D2-CAT4.1.2.3: Endpoint com-
promise
D2-CAT5: Compromise of the signature creation data (SCD)
→ D2-CAT5.1: SCD interception → D2-CAT5.1.2: Endpoint
compromise

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.2: SCA

Countermeasures: Verify the integrity of the software before installing it. Implement
integrity verification routines (e.g. TPM) for critical software
during start-up

Name: SCD compromise during issuance
Source: This thesis.
Description: The SCD is exposed and can be intercepted by an attacker if the

Certification Authority sends the SCD through an unprotected
channel to the entity in charge of writing the SCD in the SSCDev.

274

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT5: Compromise of the signature creation data (SCD) →
D2-CAT5.1: SCD interception → D2-CAT5.1.1: Interception in
interprocess/entities communication

Target(s): D3-CAT2: Software → D3-CAT2.4: Network → D3-CAT2.4.1:
Protocols

Countermeasures: Use of protected channels

Name: SAD compromise by shoulder surfing
Source: Information Systems Security: A Practitioner’s Reference [78].
Description: The attacker observes the signer introducing the SAD in the Plat-

form of the SCS (e.g. before generating a signature).
Goal: D1-CAT2: Unauthorized use of the signature creation data

(SCD)
Method: D2-CAT4: Unauthorized invocation of the signing function

→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.1:
Observation

Target(s): D3-CAT4: Human user → D3-CAT4.1: Signer
Countermeasures: -

Name: SAD compromise by optical emanation
Source: Information Leakage from Optical Emanations [159].
Description: The authors describe two implementations of a Trojan horse that

manipulates the LEDs on a standard keyboard to implement a
high-bandwidth covert channel. The attack can be mounted to
obtain the information stored in the computer or typed by the
user (e.g. the SAD).

Goal: D1-CAT2: Unauthorized use of the signature creation data
(SCD)

Method: D2-CAT4: Unauthorized invocation of the signing function
→ D2-CAT4.1: Compromise of the signer authentication data
(SAD) → D2-CAT4.1.2: SAD interception → D2-CAT4.1.2.1:
Observation

Target(s): D3-CAT3: Hardware → D3-CAT3.2: Computer → D3-
CAT3.2.4: Peripheral devices → D3-CAT3.2.4.2: Keyboard

Countermeasures: -

Name: Font type manipulation - Fonts name change
Source: What You See is Not Always What You Sign [130]
Description: This attack improves Font type manipulation - Fonts substitution

attack by using a customized font type renamed to the expected
one. As a result, the verifier is not able to distinguish whether
the computer where the signature was computed had a different
font type installed.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

275

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Method: D2-CAT1: Environment manipulation
Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-

CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Use of formats (e.g. PDF) that include the fonts definitions inside
the content of the document

Name: False positives in ASN.1
Source: What You See is Not Always What You Sign [130]
Description: If the verifier uses an ASN.1 encoding rules different than the

certificate issuer, it permits an attacker to generate a signature
with a revoked certificate without being detected in the CRLs.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.6: Alteration of certificate status verification result

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: Correct application of encoding rules

Name: Secure viewer compromise for fraudulent signature verification
(1)

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Deutsche Telekom T-Telesec Signet

1.6.0.4 product. The attack does not need administrator priv-
ileges and relies on design flaws, not implementation ones. In
particular, the attack modifies the viewer’s presentation surface
without detection to deceive the user respecting the result of the
signature verification.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.3: Verifica-
tion result masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Secure viewer compromise for fraudulent signature verification
(2)

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on IT Solution trustDesk standard 1.2.0

product. The attack does not need administrator privileges and
relies on design flaws, not implementation ones. In particular,
the attack modifies the viewer’s presentation surface without de-
tection to deceive the user respecting the result of the signature
verification.

276

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.3: Verifica-
tion result masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Secure viewer compromise for fraudulent signature verification
(3)

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on D-Sign matrix/digiSeal 3.0.1 prod-

uct. The attack does not need administrator privileges and re-
lies on design flaws, not implementation ones. In particular, the
attack modifies the viewer’s presentation surface without detec-
tion to deceive the user respecting the result of the signature
verification.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.3: Verifica-
tion result masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Manipulated presentation of signed data for fraudulent verifica-
tion

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. The attack is carried out on Ventasoft
venta-sign 2.0.0.968 product. The attack does not need admin-
istrator privileges and relies on design flaws, not implementation
ones. In particular, the attack modifies the application’s presen-
tation surface without detection to deceive the user respecting
the signature verification and integrity checker software results.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Secure viewer compromise for fraudulent signature verification
(4)

277

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on 2B Secure FILE 1.0 product. The

attack does not need administrator privileges and relies on design
flaws, not implementation ones. In particular, the attack modifies
the viewer’s presentation surface without detection to deceive the
user respecting the result of the signature verification.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.3: Verifica-
tion result masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Secure viewer compromise for fraudulent signature verification
(5)

Source: Malware Attacks on Electronic Signatures Revisited [145]
Description: The attack is carried out on Ultimaco SafeGuard Sign & Crypt

for Office 3.4.1 product. The attack does not need administrator
privileges and relies on design flaws, not implementation ones. In
particular, the attack modifies the viewer’s presentation surface
without detection to deceive the user respecting the result of the
signature verification.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.3: Verifica-
tion result masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Collisions in PDF Signatures
Source: Collisions in PDF Signatures [240]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. The author describes a vulnerability in
the PDF standard. Using this vulnerability, an attacker is ca-
pable of producing a PDF document which is shown differently
when opened, and due to the way the signature blob had been
injected by the attacker. Therefore, two different (as shown)
documents produce the same signature.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

278

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: -

Name: Dali attack (verification)
Source: The Dali Attack on Digital Signature [43]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. Attack based on the capability of a file
of having a static polymorphic behavior. The attacker prepares
the signed document to include a secondary content. Thanks to
certain formats tagging, the content shown to the verifier varies
depending on the file extension, and thus the application chosen
to open the file. The attack is limited to the inclusion of HTML
as the malicious secondary content.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.2: Viewer
manipulation → D2-CAT7.1.2.1: Viewer substitution

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Inclusion of the signed attribute content-type in the electronic
signature format (e.g. CAdES, XAdES)

Name: Enhanced Dali attack (verification)
Source: Fortifying the Dali Attack on Digital Signature [44]
Description: Attack that enhances the Dali Attack to permit the usage of tiff

and PDF formats for the contents inserted in the signed docu-
ment.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.2: Viewer
manipulation → D2-CAT7.1.2.1: Viewer substitution

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Use of PDF/A formats. Use of PDF Advanced Electronic Signa-
ture (PAdES) formats. Inclusion of the signed attribute content-
type in the electronic signature format (e.g. CAdES, XAdES)

Name: Inconsistent handling of HTML table tags (verification)
Source: What You See is Not Always What You Sign [130]

279

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Description: This attack violates the What-Is-Presented-Is-What-Is-Signed
(WIPIWIS) principle. Web browsers interpret HTML and
Javascript code in a different manner. Consequently, the same
HTML code can be shown in different ways depending on the
web browser used.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Substitution of Office document by external content using macros
(verification)

Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. When opening the signed document, some
active code (e.g. a macro programmed in Visual Basic for Appli-
cations for a Word document or an Excel spreadsheet) included in
it substitutes the content of the document by an external content
controlled by the attacker. This attack is feasible on Microsoft
Office formats. As the signature is verified against the initial
object, the signature integrity is not corrupted.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: External queries in Excel (verification)
Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. Excel includes features to make explicit
queries to remote files. The attacker can select an option to get
external data and set up a query to a remote text file. The text
file should be written with tab spaces between words to spec-
ify different fields in the spreadsheet. By right-clicking on the
cell and selecting Data Range Properties, the attacker can con-
figure the query to update on open or even regularly (in the
background).

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

280

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Substitution of Office document content by means of fields (ver-
ification)

Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. Several attacks can be performed using the
field feature in some Office formats, like Word or Excel. Fields
like TIME, USERNAME, etc. can make the visualization of a
document content vary according to conditions controlled by the
attacker. For instance, depending on the date when a document
is opened or the user that opens the document, a piece of text
can take one of several different possibilities. The content depen-
dent on a field can be updated automatically in certain versions
of Microsoft Word or explicitly via a macro.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Substitution of PDF content by means of javascript (verification)
Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. The attacker can use the form toolbar to
create a form field, and then add Javascript code in its calculate
field to change the value of the field according to the date.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Modification of HTML email content via Javascript (verification)

281

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. An attack that modifies the content of
an email formatted as HTML is performed by using the docu-
ment.write() Javascript function and the current date.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Modification of HTML email content via embedded image (veri-
fication)

Source: Electronic Documents and Digital Signatures [131]
Description: This attack violates the What-Is-Presented-Is-What-Is-Signed

(WIPIWIS) principle. The attacker embeds an image in a HTML
formatted email and, in conjunction with Javascript, is able to
modify the visualized content of the signed email.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.1: Document
processor

Countermeasures: Detect the existence of dynamic content in the signed document

Name: Modification of the request of revocation of a compromised cer-
tificate to achieve successful fraudulent signature verification

Source: This thesis.
Description: The premise of this attack is that the attacker has compromised a

private key with which he wants to sign a document on behalf of
the legitimate owner. It is also assumed that the owner of the key
has detected such compromise, and thus proceeds to revoke the
corresponding certificate. In this potential attack, the revocation
request is modified by the attacker before it is authenticated by
the owner of the certificate. For the attack to be effective, the
attacker must change the information of the request that iden-
tifies the certificate which revocation is being requested. As a
result, the revocation will not become effective, and the verifier
will conclude that the signature is valid.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

282

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.1: Alteration of subscriber’s revocation request → D2-
CAT6.1.2: Modification of revocation request

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: -

Name: Deny the revocation of a compromised certificate to achieve suc-
cessful fraudulent signature verification

Source: This thesis.
Description: The premise of this attack is that the attacker has compromised a

private key with which he wants to sign a document on behalf of
the legitimate owner. It is also assumed that the owner of the key
has detected such compromise, and thus proceeds to revoke the
corresponding certificate. In this potential attack, the revocation
request is intercepted by the attacker. If the revocation protocol
does not incorporate a revocation response (e.g. as permitted
by IETF CMP [6], the owner of the certificate will not notice
whether the revocation reached the certification authority or not.
As a result, the revocation will not become effective, and the
verifier will conclude that the signature is valid.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.1: Alteration of subscriber’s revocation request → D2-
CAT6.1.1: DoS of revocation request

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.1: External application → D3-CAT2.1.1.2: User level
application

Countermeasures: -

Name: Identity theft by untrusted trust anchor addition
Source: This thesis.
Description: In this potential attack, the attacker produces either a self-signed

certificate or a certificate issued by a faked certification author-
ity. This certificate contains the identity of the victim. After-
wards, the attacker compromises the trusted store of the verifier
to inject the trust anchor that will allow a successful certification
chain validation. Thereby, the attacker is able to sign documents
masquerading as another entity (the victim), and the verifier will
trust the fake certificate.

Goal: D1-CAT4: Make the signed document be attributed to a user
different than the actual signer

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.3: Untrusted trust anchor/trust point addition

Target(s): D3-CAT5: Information → D3-CAT5.3: Cryptographic material
→ D3-CAT5.3.1: Trust store

Countermeasures:

283

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Name: Successful fraudulent signature verification by delaying the time-
stamped signature sending

Source: This thesis.
Description: CEN CWA 14171 [47] establishes that the verifier, before as-

sessing the validity of the certificate associated to the signature,
should ascertain that at least the grace period has elapsed since
a signature relevant time. The grace period is defined as the
time period which permits the certificate revocation information
to propagate through the revocation process to relying parties; it
is the minimum time period an initial verifier has to wait to al-
low any authorized entity to request a certificate revocation and
the relevant revocation status provider to publish revocation sta-
tus. CEN CWA 14171 also indicates that the signature relevant
time should be the time indicated in an associated TST or in an
associated time mark.
On the other hand, the cautionary period is defined at Certifica-
tion Practices Statement level [50], which allows the legitimate
owner of a digital certificate to withdraw the validity of a recently
generated signature by revoking the corresponding certificate a
posteriori, that is, once the signature has been computed. As-
suming a delay between the time when a key is compromised and
the time when the user notices it and requests the revocation of
the corresponding certificate(s), the cautionary period offers the
users a mechanism for preventing the attackers to benefit from
the signatures performed during this time frame. The verifier
should wait a period (the cautionary period) after receiving a
signature to allow certificate revocation requests to be processed
by the CA, even when these requests were made after the signa-
ture computation. In this situation, grace and cautionary periods
mean the same concept.
In this potential attack, it is being assumed that the legitimate
owner of the certificate (user) cannot detect the private key com-
promise before the attacker makes use of the signed document
and the corresponding signature. On the other hand, it is also as-
sumed that the attacker cannot benefit from the signed document
before the cautionary period expires, diminishing the attacker’s
chances.
Section 5.2 of CEN CWA 14171 permits that a signer acts as an
initial verifier as well, being capable of adding a trusted time-
stamp or time-mark to the signature. Suppose that an attacker
compromises a user’s private key, signs a desired document with
it and time stamps the generated signature. Let’s consider that
the user detects the key compromise once another entity, like the
verifier, receives the signature.
If an entity different to the attacker knows the existence of the
signature, it is possible that the user is somehow notified about
that (possibly during the grace period) and then he could proceed
to request the certificate(s) revocation, preventing the attacker
to benefit from the forged signature.

284

However, if the attacker delays the signature sending until the
CRL is updated, then the verifier will possess a CRL issued af-
ter the signing time (specified by the time-stamp), and will not
wait for any further update. The CRL next update value can
be easily guessed by the attacker just by taking a look at the
’nextUpdate’ field of the CRL data structure [57]. As a result,
and though made, the revocation request will have no effect. The
signature will be considered valid and the attacker will be able to
benefit from it although the certificate revocation is afterwards
published.
This attack could also be performed using time-marks.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.1: Grace or cautionary period bypassing → D2-
CAT6.2.1.1: Delay in time-stamped signature sending

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: If the verifier receives a signature a long time after the time indi-
cated in the time-stamp included in the signature by the signer,
then the attack described herein could have been applied. A
security policy should indicate whether the signature should be
considered as invalid or not, depending on such elapsed time.

Name: Successful fraudulent signature verification by exploiting the de-
lay in CA’s revocation request processing

Source: This thesis.
Description: In this potential attack, an attacker has compromised a private

key and generated a signature with it. Let’s suppose that the
user detects it, and requests the revocation of his certificate c1,
indicating time t 0 as the time on which he suspects that the
private key was compromised (i.e. invalidityDate, according to
[57]). The certification authority (CA) receives the revocation
request at time t 1, but does not process it till time t 3. Mean-
while, at time t 2 (t 1 < t 2 < t 3) the CA publishes a new CRL
without the revocation information about c1. Therefore, delay
t 3 - t 1 prevents the CA from publishing a properly updated
CRL at time t 2.
A verifier that is validating certificate c1 at a time later than t 0
but before t 2, and following current standards recommendations,
waits the grace period before concluding about the validity or
invalidity of such certificate. Because next CRL is published at
time t 2, that is the one used for the certificate status validation,
reaching the conclusion that certificate c1 is valid.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

285

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.1: Grace or cautionary period bypassing → D2-
CAT6.2.1.3: Exploit delay in CA’s revocation request processing

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.6: CA

Countermeasures: Use updated revocation information, possibly by accessing an
Online Certificate Status Protocol (OCSP) service.

Name: Low-level LDAP injection techniques to avoid detection of re-
voked certificate

Source: This thesis.
Description: An attacker that is capable of modifying the status validation

request made by the verifier will prevent him from checking the
actual status of the certificate. Therefore, although the certifi-
cate was revoked by the user due to a key compromise, the at-
tacker will make the verifier conclude that the signature is valid.
LDAP injection techniques [7] can be used to modify the LDAP
query that contains the certificate subject Distinguished Name,
making the LDAP server search for a different or nonexistent ob-
ject. Contrary to classical LDAP injection techniques, where the
LDAP query is altered by the attacker due to the malicious in-
put entered from a client application (e.g. Web browser), in this
attack the query must be modified at a lower level, for example,
before the SVA sends the query to the LDAP server, and once it
has been composed.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.2: Modification of certificate status verification request
→ D2-CAT6.2.2.2: Modification of LDAP-based request

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: Protect queries and responses from integrity attacks (e.g. LDAP-
s), and check whether the given response’s search criteria matches
with the desired one.

Name: Modification of the OCSP response to avoid detection of revoked
certificate (1)

Source: This thesis.
Description: This potential attacks requires the attacker to be capable of mod-

ifying the OCSP response and subvert the OCSP-response signa-
ture verification mechanism in order to prevent the verifier from
detecting the violation of the signature integrity. Therefore, it is
assumed that the OCSP response has been signed by the OCSP
server.

286

In this particular attack, the attacker modifies the field OCSPRe-
sponse.responseBytes.response.tbsResponseData.responses[i]
.certStatus, setting its value to ’good’. To subvert the signature
verification mechanism, the attacker should apply mechanisms
covered by D2-CAT7: Influence on signature verification result
category, what would fall into a secondary attack not considered
herein for classification.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.3: Modification of certificate status verification response

Target(s): D3-CAT5: Information → D3-CAT5.2: Protocol message
Countermeasures: -

Name: Modification of the OCSP response to avoid detection of revoked
certificate (2)

Source: This thesis.
Description: This potential attacks requires the attacker to be capa-

ble of modifying the OCSP response, signing it with
a certificate of his own, and subvert the mechanisms
that verify the certification chain. In particular, the
attack would cover the modification of the field OCSPRe-
sponse.responseBytes.response.tbsResponseData.responses[i]
.certStatus, setting its value to ’good’. The operations of
signing the modified OCSP response with a certificate of his
own, and injecting as trust point such certificate, fall into a
secondary attack, covered by D2-CAT6: Influence on certificate
verification result → D2-CAT6.3: Untrusted trust anchor/trust
point addition subcategory.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.3: Modification of certificate status verification response

Target(s): D3-CAT5: Information → D3-CAT5.2: Protocol message
Countermeasures: -

Name: Modification of time-stamp to avoid detection of revoked certifi-
cate

Source: This thesis.
Description: This potential attack requires the attacker to be able to mod-

ify the time-stamp of the signature without detection. Possible
mechanisms that can be used further to avoid such detection
include subcategories under D2-CAT6: Influence on certificate
verification result category and D2-CAT7: Influence on signa-
ture verification result category.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

287

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

Method: D2-CAT6: Influence on certificate verification result → D2-
CAT6.2: Alteration of certificate status verification → D2-
CAT6.2.4: Alteration of time reference verification → D2-
CAT6.2.4.1: Modification of time-stamp

Target(s): D3-CAT5: Information → D3-CAT5.3: Cryptographic material
→ D3-CAT5.3.2: Time-stamp

Countermeasures: If the verifier receives a signature a long time after the time indi-
cated by the time-stamp, then the attack described herein could
have been applied. A security policy should indicate whether the
signature should be considered as invalid or not, depending on
such elapsed time.

Name: Document masquerading during a document authorization chain
Source: This thesis.
Description: This potential attack violates the What-Is-Presented-Is-What-Is-

Signed (WIPIWIS) principle. In a situation where a signer has to
authorize or approve a signed document authored by another (e.g
by countersigning a signature) but after its verification, it might
be of interest to the attacker to alter the visualization of the
signed document in order to show the intended one. As a result,
the authorization would be produced, but over the fraudulent
document. In this attack, it is assumed that the attacker has
been able to obtain a signature on behalf of the purported signer
over a fraudulent document, and that the attacker possesses the
intended document as well. Afterwards, the attacker sends to the
SVA the pair fraudulent document-signature, what is correctly
verified, but makes the SVA show the intended document to the
second signer.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.1: Document masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Showing a different signer during the signature verification
Source: This thesis.
Description: This potential attack violates the What-Is-Presented-Is-What-

Is-Signed (WIPIWIS) principle, regarding the signed attribute
signing-certificate, as defined by Advanced Electronic Signature
Formats (AdES) [74, 75]. In this attack, the attacker makes the
SVA show a signer different that the actual one. This attack
could be launched once the SVA has read the information con-
tained in the certificate signed as attribute (signing-certificate
attribute), and possibly by modifying regions of the visualiza-
tion area of the application (see Cut and paste attacks with Java
[150]).

288

Goal: D1-CAT4: Make the signed document be attributed to a user
different than the actual signer

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.1: Presentation manipulation → D2-CAT7.1.1: DTBV
masquerading → D2-CAT7.1.1.2: Attribute masquerading

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Injection of different signature-signed data pair during verifica-
tion

Source: This thesis.
Description: In this potential attack, it is assumed that the attacker possesses

a document signed by the signer and the corresponding signature,
but different to the signed document and signature that is to be
verified. Therefore, the attacker replaces the information during
the verification process by injecting into the SVA the former pair
of signed document-signature. For example, if two versions of
a draft document have been signed by the author, but he only
wanted to distribute the newest one for approval, the attacker
might want to replace the draft and corresponding signature by
the oldest pair.

Goal: D1-CAT5: Make the Data To Be Verified (DTBV) be shown with
chosen content

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.3: Alteration of verification process → D2-CAT7.3.1: In-
jection of signature-signed data pair

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

Name: Modification of cryptographic verification result
Source: This thesis.
Description: In this potential attack, if the attacker had access to the routine

of the cryptographic verification, then the attacker would be able
to make a signature be verified as valid when the integrity was
broken.

Goal: D1-CAT6: Make the signature validity verification conclude with
an opposite result

Method: D2-CAT7: Influence on signature verification result → D2-
CAT7.3: Alteration of verification process → D2-CAT7.3.2: Al-
teration of cryptographic verification result

Target(s): D3-CAT2: Software → D3-CAT2.1: Application → D3-
CAT2.1.2: Related application → D3-CAT2.1.2.5: SVA

Countermeasures: -

289

B. CLASSIFIED ATTACKS ON DIGITAL SIGNATURES

290

Appendix C

Extended Signature Policy

Validation Algorithm

This Appendix contains the pseudo-code of the validation algorithm described in Chap-

ter 8. Firstly, Section C.1 provides the graphical representation used to explain par-

ticular operations carried out during the execution of the algorithm. Secondly, the

validation algorithm is explained in Section C.2.

C.1 Graphical Representation of a Tree

The notation given in Chapter 1 is used in the graphical representation of a tree,

explained herein.

Both the tree of signatures (TSi) and the set of signatures (SSi) processed by the

validation algorithm are represented as trees composed of circles and arrows. In the

TSi, the circle represents a node by using the node’s signer identifier (it is assumed that

each node has been given a unique identifier). Near each circle, the acceptable signature

policies and the allowed commitment types are indicated among brackets. An absolute

dependence (ATS), if present, is represented below the commitment types. Relative

and timing dependences (RTS) are represented by an arrow with a discontinuous line.

The node from which the arrow starts is the one that has the dependence with the

node to which the arrow head points. Thereby, if there is an arrow with discontinuous

line from node 3 to node 4, it means that node 3 has a relative dependence (has to be

generated after) with node 4. If there is a maximum delta defined for that dependence,

then the value is assigned as a label to the arrow. Finally, countersignatures are nodes

that are connected by arrows, but in a lower level of the tree (e.g. A node in level two

connected to a node in level one means that the former is the countersignature of the

latter).

291

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

In the SSi, the circle represents a signature (ds:Signature element) according to [233]

and [75], but with the information simplified. Each signature (circle) has the subject

distinguished name inside, while the signature policy used and the commitment type

made appear near it. We assume that every signer has selected the same extended

signature policy reference, and thus it is not shown. The signing time is represented as

a time mark in yyyymmddhhmmss format. The countersignatures are represented in

the same way as in the TSi.

Figure C.1 is a simple example of a graphical representation of both a TSi and a

SSi, where the node PS1 of TSi has a RTS on node PS2, which has an ATS. On the

right side of the Figure, both signatures of the SSi include the signing time.

Figure C.1: An example of a graphical representation of a tree.

C.2 Validation Algorithm

The algorithm is split in several routines, which generally follow a recursive design.

Prior to the execution of this algorithm, the extended electronic signature policy (ext-

SP) must be processed and its information stored in adequate data structures for further

analysis.

The detailed data structures, programming language, etc. to be used is out of

scope of the Appendix. However, and as will be seen further, references or pointers

between certain structures are proposed to accelerate and ease the process. Sometimes,

double-linked elements are used. For instance, the algorithm is able to retrieve both

the children and parent nodes of a particular node in a TSi. That is, the data structure

that represents a node in a TSi (Signature ASN.1 type) contains a pointer to each child

node but also a pointer to the parent node. These pointers allow the algorithm to

explore the TSi both in a forward and a backward manner. An implementation of the

292

C.2 Validation Algorithm

Document Object Model (DOM) of the W3C [65] would achieve that, like Xalan and

Xerces, that implement the org.w3c.dom Java interface.

The algorithm uses a global variable named matchingList, which is accessible from

any routine and contains the definite and non-definite signer identifiers assignments

between SSi signatures (subjectDN field) and TSi nodes (signer field).

Algorithm 1 ValidationAlgorithm (Tree TSi, Tree SSi)

1: while ∃ TSi ∈ extSP do
2: if distribution(TSi[0]) == distribution(SSi[0]) then
3: for each PrimarySignature ps ∈ SSi[0] do
4: candidateNodes ← PruneByDimension(ps,TSi[0])
5: if Explore(ps, candidateNodes) == null then
6: skip this TSi
7: end if
8: end for
9: if !skip AND Refine(TSi,SSi) then

10: return true
11: end if
12: end if
13: end while
14: return false

As can be seen in line 1 of ValidationAlgorithm routine, the algorithm processes

every TSi until one of them is satisfied (SSi satisfies the ext-SP), or all of them have

been analyzed (SSi does not satisfy the ext-SP). As the very first step (2), the algorithm

checks the distribution (Distribution-based pruning) of the TSi and SSi root nodes. If

there is no correspondence, then it is obvious that this TSi cannot be satisfied by the

SSi. Otherwise, the algorithm starts exploring the TSi with each Primary Signature.

Before invoking the Explore routine (line 5), the algorithm applies the Dimension-based

pruning to the nodes in first level of the TSi, taking into account the dimension of the

signature being analyzed 4. The resultant list of nodes are the candidate nodes for

that signature. See Section 8.2.2.2 of Chapter 8 for information about the functional

behavior of these two prunings, and Section C.2.3 of the current Appendix for the

corresponding routines.

As explained in Section 8.2.2.3 of Chapter 8, a refinement stage is necessary in order

to detect potential deadlocks and unvisited nodes, and evaluate timing and sequence

dependences. These tasks are performed by the Refine routine (9) in line 9, if and only

if exploration of every Primary Signature of SSi has succeed.

293

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

C.2.1 Exploring the TSi

The Explore routine (2) tries to match the indicated signature with the candidate nodes,

progressing along the tree in a recursive manner. The routine discards those nodes that

do not have the same distribution as the received signature (lines 1-5). Afterwards, the

remaining nodes are evaluated according to the matching criteria (see Routine 3). If

the number of matched nodes is zero, then a deadlock occurs (line 10). Each matched

node is expanded (line 16) in the sense that its children nodes will be used as candidate

nodes for the CounterSignatures (line 19). Children candidate nodes are grouped by

branch, in the sense that the child nodes of one candidate node are separated from

child nodes of another candidate node. This is necessary in order to correctly apply

the Dimension-based pruning before recursively invoking the Explore routine 22.

The exploration process follows a DFS strategy. As can be seen in line 35, once every

CounterSignature has been processed, the routine returns the list of parent nodes that

derived in a matching. Parent nodes not included in the list are discarded as matched

nodes for the parent signature during backtracking (line 29). Thereby, the Path-based

pruning explained in Section 8.2.2.2 of Chapter 8 is enforced. But before that, the

Signer-based pruning is applied as specified in Section 8.2.2.2 (line 28). If every node

is discarded by the pruning, a deadlock occurs (line 30).

In order to improve the routine performance, the set of candidate nodes for subse-

quent CounterSignatures is refined in each iteration by deleting from the list of candi-

date nodes those that have been pruned (line 33).

C.2.2 Signature Matching

The Matching routine (3) evaluates which nodes among the indicated candidates can

be matched with the signature. For that purpose, the routine firstly decides if it is the

first matching process for the signature’s subject distinguished name (subjectDN) (line

2). In that case, and if a matching is produced, the node’s signer field is associated

with the subjectDN, as shown in line 12. Otherwise, in subsequent executions, this

routine will conclude a matching providing that the node’s signer identifier is already

associated with the subjectDN (line 15).

When a node is matched, it’s visiting counter is increased in one (lines 9 and 16)

and a cross pointer is created between the node and the signature (lines 10, 11 and 17,

18). If only one node has been matched with the signature, then a definite assignment

is produced (line 23).

When some sort of pruning is performed (see Section C.2.3), or other circumstances

arise (e.g. a dependence is not fulfilled – see Section C.2.4.3), the matching between a

294

C.2 Validation Algorithm

Routine 2 Explore (Signature s, List<Node> candidateNodes)

1: for each Node n ∈ candidateNodes do
2: if distribution(s.counterSignatures) != distribution(n.childrenNodes) then
3: delete n from candidateNodes
4: end if
5: end for
6: if |candidateNodes| == 0 then
7: return null
8: end if
9: s.matchedNodes = Matching(s, candidateNodes)

10: if |s.matchedNodes| == 0 then
11: return null
12: end if
13: childrenCandidateNodes = new List()
14: i = 0
15: for each Node n ∈ s.matchedNodes do
16: childrenCandidateNodes.add(i,n.childrenNodes)
17: i++
18: end for
19: for each CounterSignature cs ∈ Signature s do
20: finalCadidates = new List()
21: for each i = 0 to childrenCandidateNodes.length do
22: finalCadidates.add(PruneByDimension(cs, childrenCandidateNodes[i]))
23: end for
24: activeNodes = Explore(cs, finalCadidates)
25: if activeNodes == null then
26: return null
27: end if
28: PruneBySigner(s)
29: PruneByPath(s, activeNodes)
30: if |s.matchedNodes| == 0 then
31: return null
32: end if
33: delete nodes from childrenCandidateNodes which parent /∈ s.matchedNodes
34: end for
35: return list of parents of s.matchedNodes

signature and a node has to be undone. In that case, the UndoMatching routine (4) is

invoked.

In the UndoMatching routine, the corresponding node’s visiting counter is decreased

in one and the cross pointer deleted. Moreover, the association between the signature

295

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 3 Matching (Signature s, List<Node> candidateNodes)

1: matchedNodes = new List()
2: if matchingList[s.subjectDN] = null then
3: insert ← true
4: end if
5: for each Node n ∈ candidateNodes do
6: if s.signaturePolicy ∈ n.acceptableSignPolicies AND

s.commitmentType ∈ n.allowedCommitmentTypes then
7: if insert then
8: if n.signer is not definitely assigned then
9: n.visited++

10: matchedNodes.add(n)
11: n.matchedSignatures.add(s)
12: matchingList.add(s.subjectDN, n.signer)
13: end if
14: else
15: if n.signer ∈ matchingList[s.subjectDN] then
16: n.visited++
17: matchedNodes.add(n)
18: n.matchedSignatures.add(s)
19: end if
20: end if
21: end if
22: end for
23: if |matchedNodes| = 1 then
24: establish n.signer and s.subjectDN as definitely assigned to each other
25: end if
26: return matchedNodes

subjectDN and the node signer identifier is deleted if no other node with that signer

identifier remains matched with the signature after the matching undo (lines 4-11).

C.2.3 Pruning Methods

In order to improve the algorithm performance, four types of pruning are implemented:

the Signer-based pruning, in the PruneBySigner routine C.2.3.1, the Path-based prun-

ing, in the PruneByPath routine C.2.3.2, the Distribution-based pruning, in the Dis-

tribution routine C.2.3.3, and the Dimension-based pruning, in the PruneByDimension

routine C.2.3.4.

296

C.2 Validation Algorithm

Routine 4 UndoMatching (Signature s, Node n)

1: n.visited−−
2: delete n from s.matchedNodes
3: delete s from n.matchedSignatures
4: for each Node aux ∈ s.matchedNodes do
5: if aux.signer == n.signer then
6: found ← true
7: end if
8: end for
9: if !found then

10: matchingList.delete(s.subjectDN, n.signer)
11: end if

C.2.3.1 Signer-based pruning

This pruning is enforced by the PruneBySigner routine (5). In lines 1-5, each node

which signer field has been definitely assigned to a subjectDN different than the signa-

ture’s one is deleted from the signature’s matched nodes.

Each time a matching has to be undone, UndoMatching routine is invoked (4).

If only a single node remains matched after the pruning is done, then a definite

signer assignment is produced, as indicated in line 6.

Routine 5 PruneBySigner (Signature s)

1: for each Node n ∈ s.matchedNodes do
2: if n.signer is definitely assigned AND

matchingList[n.signer] != s.subjectDN then
3: UndoMatching(s,n)
4: end if
5: end for
6: if |s.matchedNodes| = 1 then
7: establish n.signer and s.subjectDN as definitely assigned to each other
8: end if

C.2.3.2 Path-based pruning

The path-based pruning of the algorithm is coded in the PruneByPath routine (6). Each

node not included in the set of active nodes is deleted from the signature’s matched

nodes.

Matching undoes and definite signer assignments are treated in the same way as in

signer-based pruning routine above.

297

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 6 PruneByPath (Signature s, List<Node> activeNodes)

1: for each Node n ∈ s.matchedNodes do
2: if n /∈ activeNodes then
3: UndoMatching(s,n)
4: end if
5: end for
6: if |s.matchedNodes| = 1 then
7: establish n.signer and s.subjectDN as definitely assigned to each other
8: end if

C.2.3.3 Distribution-based pruning

This pruning is enforced by the Distribution routine (7) plus the comparison operation

that must be carried out between two distributions when the pruning needs to be done

(e.g. line 2 in the Explore routine). Therefore, this routine calculates the distribution

for a particular collection of nodes (actually, children of the node which distribution

has to be calculated).

For that purpose, the routine calculates, for each node, the number of nodes in the

collection that have the same identifier (signer identifier if the node belongs to a TSi

and subjectDN if it belongs to a SSi) (lines 2-16). Each time a node has been analyzed,

the counter for the dimension found is updated (lines 9-14).

Finally, the counter for each dimension is normalized due to the counter mode

followed. For instance, if the collection of nodes is {n1, n2, n2, n3, n3, n3}, then, once

the loop of line 2 finishes, the distribution will be {1 = 1, 2 = 4, 3 = 9}, what is wrong.

It is because each occurrence is counted as many times as the number of nodes that

match. Lines 17-19 correspond to the normalization method applied, which corrects

the previous inaccuracy.

Note that in line 15 the identifier of the node is added to a list of identifiers for

that dimension. This information will be useful when applying the Dimension-based

pruning C.2.3.4.

C.2.3.4 Dimension-based pruning

Finally, this pruning is enforced by the PruneByDimension routine (8). Before invoking

this routine, the distributions for both the collection of TSi nodes and SSi signatures

have to be loaded by invoking the Distribution routine (7). The signaturesInformation

and nodesInformation structures correspond to the information structure used in the

Distribution routine.

This routine obtains the dimension of the received signature, and later returns a

subset of the received collection of nodes with the nodes which dimension coincides.

298

C.2 Validation Algorithm

Routine 7 Distribution (List<Node> nodesCollection)

1: distribution = new Map()
2: for each Node n ∈ nodesCollection do
3: dimension = 0
4: for each Node n’ ∈ nodesCollection do
5: if n.identifier == n’.identifier then
6: dimension++
7: end if
8: end for
9: counter = distribution[dimension]

10: if counter == null then
11: distribution[dimension] = 1
12: else
13: distribution[dimension] = counter + 1
14: end if
15: information[dimension].add(node.identifier)
16: end for
17: for each dimension d ∈ distribution do
18: distribution[d] = distribution[d]/d
19: end for

Routine 8 PruneByDimension (Signature s, List<Node> nodes)

1: nodesToReturn ← new List()
2: for each dimension d ∈ signaturesInformation do
3: if signaturesInformation[d] contains s.subjectDN then
4: for each Node n ∈ nodes do
5: if nodesInformation[d] contains n.signer then
6: nodesToReturn.add(n)
7: end if
8: end for
9: return nodesToReturn

10: end if
11: end for

C.2.4 Refinement Stage

The Refine routine (9) consists of three phases, named RefinementPhaseOne (dead-

locks detection) C.2.4.1, RefinementPhaseTwo (unvisited nodes detection) C.2.4.2 and

RefinementPhaseThree (timing and sequence constraints evaluation) C.2.4.3, further

explained. Phases one and two must be executed again after phase three (lines 14-23)

because RefinementPhaseThree can undo matchings between nodes and signatures.

299

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 9 Refine (Tree TSi, Tree SSi)
1: repeat
2: for each PrimarySignature ps ∈ SSi[0] do
3: if RefinementPhaseOne(ps) = null then
4: return false
5: end if
6: end for
7: until no change
8: if !RefinementPhaseTwo(TSi) then
9: return false

10: end if
11: if !RefinementPhaseThree(TSi) then
12: return false
13: end if
14: repeat
15: for each PrimarySignature ps ∈ SSi[0] do
16: if RefinementPhaseOne(ps) = null then
17: return false
18: end if
19: end for
20: until no change
21: if !RefinementPhaseTwo(TSi) then
22: return false
23: end if
24: return true

C.2.4.1 Detecting potential deadlocks

During the first phase of the refinement, the RefinementPhaseOne routine (10) car-

ries out a path-based and signer-based prunings both in a top-down and bottom-up

approaches.

During the exploration process (see Routine 2), the prunings are mainly applied

in a bottom-up approach. The top-down approach is followed when exploring sibling

nodes, from left to right. This strategy makes a pruning applied to a certain node not

having effect in a left-hand side sibling node. As a result, a signature can maintain

matchings with nodes which parent nodes are further pruned for the parent signature,

or a signature can maintain a matching with a node which signer identifier is later

definitely assigned to a different subjectDN.

To resolve this issue, the RefinementPhaseOne routine deletes the nodes belonging

to the matched nodes which parent nodes are not matched with the parent signature

(lines 3-7). Afterwards. the signer-based and path-based prunings are performed in

300

C.2 Validation Algorithm

lines 8 and 9, respectively. Obviously, if no matched node remains after the pruning, a

deadlock occurs.

The SSi is explored in a DFS strategy until the leaf signatures are reached. From

that moment onwards, the routine returns, in each executed recursive iteration, the list

of parent nodes corresponding to the matched nodes (line 25), and the obtained active

nodes are used for the path-based pruning (line 20), after having applied the signer-

based pruning (line 19). This behavior implements the bottom-up pruning approach,

like in the Explore routine.

As can be seen in Refine routine (9), the RefinementPhaseOne routine is executed

until no change is produced, that is, a stable version of the solution is obtained or a

deadlock occurs.

Routine 10 RefinementPhaseOne (Signature s)

1: activeNodes = s.matchedNodes
2: if s→parent 6= null then
3: for each Node n ∈ activeNodes do
4: if n→parent /∈ s→parent.matchedNodes then
5: delete n from activeNodes
6: end if
7: end for
8: PruneBySigner(s)
9: PruneByPath(s, activeNodes)

10: if |s.matchedNodes| == 0 then
11: return null
12: end if
13: end if
14: for each CounterSignature cs ∈ signature s do
15: activeNodes = RefinementPhaseOne(cs)
16: if activeNodes == null then
17: return null
18: end if
19: PruneBySigner(s)
20: PruneByPath(s, activeNodes)
21: if |s.matchedNodes| == 0 then
22: return null
23: end if
24: end for
25: return list of parents of matchedNodes

301

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

C.2.4.2 Detecting unvisited nodes

The RefinementPhaseTwo routine (11) is quite simple. It merely explores the tree TSi

following a BFS strategy, by using a FIFO (First In First Out) queue. If an unvisited

node is found (line 6), then the refinement fails (and so does the validation).

Routine 11 RefinementPhaseTwo (Tree TSi)

1: for each Node n ∈ TSi[0] do
2: Queue ← node
3: end for
4: while Queue has elements do
5: aux ← Queue
6: if aux.visited == 0 then
7: return false
8: end if

Queue ← aux.childrenNodes
9: end while

C.2.4.3 Evaluating the timing and sequence dependencies

The timing and sequence dependences are evaluated during the phase three, represented

in the RefinementPhaseThree routine (12). In this phase, the TSi is explored in a

BFS approach, as in phase two, and each node’s timing and sequence constraints are

evaluated. A node’s dependence can be either absolute (line 8) or relative (line 12).

Absolute timing and sequence evaluation

Absolute dependences are evaluated in the EvalAbsTimeSeq routine (13). A matching

is undone for each signature matched with the received node that does not fulfill the

constraint. Note that when a matching is undone (line 3), it has to be expanded

through the TSi tree by means of the UndoMatchingProgressAtOrigin routine (17),

further explained.

Relative timing and sequence evaluation

Relative dependences are evaluated in the EvalRelTimeSeq routine (14). In this case,

the evaluation is a bit more complex. A node can have several relative dependences

with other nodes. As each node can be matched with more than one signature, many

possible combinations may arise.

Each relative dependence is separately analyzed (line 2). The node with which

there is a dependence is searched in the TSi by using the path of node’s identifiers

302

C.2 Validation Algorithm

(line 3 - Routine 15). From line 4 to line 17, each combination of signatures is eval-

uated. Each satisfying combination is added to the set of dependence solutions (line

7), and it is said to be a solution pair. A solution pair consists of an origin signature

and its corresponding matched node, and a referenced signature and its corresponding

matched node. The origin node is the node that has the relative dependence on the

referenced one, and the origin and referenced signatures are signatures which signing

time properties comply with the constraint.

If no solution pair is generated for a certain signature of the node being evaluated,

the matching is undone (line 10) by calling the UndoMatching routine (4). Furthermore,

Routine 12 RefinementPhaseThree (Tree TSi)

1: for each Node n ∈ TSi[0] do
2: Queue ← node
3: end for
4: while Queue has elements do
5: aux ← Queue
6: dependence ← aux.timingAndSequence
7: if dependence is absolute then
8: if !EvalAbsT imeSeq(TSi, aux) then
9: return false

10: end if
11: else
12: if !EvalRelT imeSeq(TSi, aux) then
13: return false
14: end if
15: end if

Queue ← aux.childrenNodes
16: end while
17: return true

Routine 13 EvalAbsTimeSeq (Tree TSi, Node n)

1: for each Signature s ∈ n.matchedSignatures do
2: if s DOES NOT satisfy dependence then
3: UndoMatching(s, n)
4: if |s.matchedNodes| == 0 OR |n.matchedSignatures| == 0 then
5: return false
6: end if
7: UndoMatchingProgressAtOrigin(TSi, s, n)
8: end if
9: end for

10: return true

303

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

as this node can be referenced from others’ relative dependences, the deletion must be

progressive, and thus the UndoMatchingProgressAtOrigin routine 17.

If no signature remains matched with the node after a relative dependence eval-

uation, then the node becomes unvisited, and the refinement fails (and so does the

validation) (line 18). Moreover, signatures matched with a node referenced in a de-

pendence, and that are not included in any generated solution pair, are deleted from

that node by using a progressive deletion at destination routine (lines 21-31) (see Un-

doMatchingProgressAtDestination routine 19).

In a nutshell, the relative timing and sequence dependences are satisfied if there

is at least one signature matched with the node that satisfies every dependence. In a

formal way, this requirement is expressed as follows:

∃ s ∈ n.matchedSignatures / ∃ solutionPair(s, s′)

∀ rd ∈ n.dependences, s′ ∈ rd− > refNode.matchedSignatures (C.1)

where

s is a signature matched with node n

rd is a relative dependence existent in node n

s′ is a signature matched with node refNode referenced in the dependence rd

When a relative dependence has to be evaluated, the node with which the depen-

dence exists must be searched in TSi, as shown in line 3 of EvalRelTimeSeq routine

(14). However, the information available in that moment is the path of unique nodes’

identifiers from the root node to the referenced node. The NodeSearch routine (15)

uses the path to find the node by using a BFS strategy focused on a specific level in

each iteration (16).

The ExclusivePathBasedSearch routine (Routine 16) processes a specific node taking

into account a node identifier included in the path (line 1). If the node’s identifier match,

then the routine explores, in a recursive manner, the children nodes but using the next

identifier in the path (lines 5-14). The routine returns “error” if every possibility has

been analyzed without finding the corresponding node, “node not found” if the specific

evaluated node does not match the particular node identifier, or the node (“goal”) if it

is found and the path has been completely processed (line 2).

Progressive deletion routines

During the refinement phase three (C.2.4.3), an unmatching between a signature and

a node can be produced if some timing and sequence dependence is not fulfilled. Next,

304

C.2 Validation Algorithm

Routine 14 EvalRelTimeSeq (Tree TSi, Node n)

1: dependence ← n.timingAndSequence
2: for each relativeDependence rd ∈ dependence do
3: rNode = NodeSearch(TSi, rd.pathToRefSignature))
4: for each Signature s ∈ n.matchedSignatures do
5: for each Signature rSignature ∈ rNode.matchedSignatures do
6: if s and rSignature satisfy dependence then
7: n.dependences ← add new solutionPair((s,n),(rSignature,rNode))
8: end if
9: end for

10: if no pair created for Signature s then
11: UndoMatching(s,n)
12: UndoMatchingProgressAtOrigin(TSi, s, n)
13: if |s.matchedNodes| == 0 OR |n.matchedSignatures| == 0 then
14: return false
15: end if
16: end if
17: end for
18: if |n.matchedSignatures| == 0 then
19: return false
20: end if
21: for each Signature rSignature ∈ rNode.matchedSignatures do
22: for each solutionPair sp ∈ rd do
23: if sp→ referencedSignature == rSignature then
24: keep ← true
25: skip
26: end if
27: end for
28: if !keep then
29: UndoMatchingProgressAtDestination(TSi, rSignature, rNode)
30: end if
31: end for
32: end for
33: return true

two progressive deletion routines that maintain the consistence of the mapping between

the SSi and the TSi are explained.

Undoing a matching at the origin

When a matching is undone, the whole tree has to be evaluated again in order

305

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 15 NodeSearch (Tree TSi, List<int> pathIds)

1: for each Node n ∈ TSi[0] do
2: goal = ExclusivePathBasedSearch(n, pathIds, 0)
3: if node found then
4: return goal
5: end if
6: end for
7: return node not found

Routine 16 ExclusivePathBasedSearch (Node node, List<int> pathIds, int index)

1: if node.id == pathIds[index] then
2: if pathIds.length == index +1 then
3: return node
4: end if
5: for each Node childNode ∈ node.childrenNodes do
6: goal = ExclusivePathBasedSearch(childNode, pathIds, i+1)
7: if node found then
8: return goal
9: else if error then

10: return error
11: else
12: do nothing
13: end if
14: end for
15: return error
16: else
17: return node not found
18: end if

to detect which nodes are linked with that particular signature and node by means

of a solution pair. That is, which nodes have not only a relative dependence with

that node but also reference the unmatched signature in a solution pair. This update

process is called a progressive deletion at the origin, and it is implemented by the

UndoMatchingProgressAtOrigin routine (17). This routine can be invoked after both

absolute and relative dependence evaluations.

Next Figure C.2 shows a situation where a progressive deletion at the origin has to

be executed because an absolute dependence is not fulfilled.

The Figure represents a fragment of a TSi tree with two nodes (PS1 and PS2). PS1

node has been matched with signatures SDN3 and SDN4, while PS2 node has been

matched with signatures SDN0 and SDN1. Let suppose that, during the refinement

306

C.2 Validation Algorithm

Figure C.2: Undoing a matching at the origin (Absolute dependence not fulfilled).

phase three, PS1 node has been firstly evaluated, being three solution pairs generated.

Afterwards, when the algorithm evaluates PS2 node, it detects that only signature

SDN0 complies with the absolute timing and sequence dependence – which sets the

NotBefore constraint only – established. As a result, the matching between node PS2

and signature SDN1 is undone by calling UndoMatchingProgressAtOrigin routine (see

EvalAbsTimeSeq routine 13). Subsequently, the algorithm explores node PS1 again to

detect, firstly, if it has a dependence on the PS2 node, what is true. Secondly, the

algorithm analyses the solution pairs created to detect any solution pair that refer-

ences signature SDN1, and delete it. It can be noticed that two of the three solution

pairs reference signature SDN1 ({SDN3, SDN1} and {SDN4, SDN1}). The algo-

rithm deletes both of them. As a consequence, no solution pair with signature SDN4 as

origin remains, and thus the algorithm undoes the matching between signature SDN4

and PS1 node.

If the TSi tree had more nodes, the algorithm would have to process it in order to

find any node with a relative dependence on PS1 node that could reference signature

307

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

SDN4 (recursive calling of UndoMatchingProgressAtOrigin routine).

On the other hand, Figure C.3 depicts the case of a progressive deletion at origin

when a relative dependence is not fulfilled by one of the signatures (SDN1) initially

matched with a node (PS2). In this case, the absolute dependence established for

PS2 node is fulfilled by both signatures SDN0 and SDN1. However, when evaluating

the relative dependence on PS3 node, only signature SDN0 fulfills it, and thus it is

the only signature that appears as the origin of the generated solution pairs, with

signatures SDN4 and SDN5 of node PS3 as the referenced signatures ({SDN0, SDN4}
and {SDN0, SDN5}, respectively).

When the algorithm detects that no solution pair is generated for signature SDN1,

the matching between signature SDN1 and PS2 node is undone (operation carried out

by the EvalRelTimeSeq routine 14, not the UndoMatchingProgressAtOrigin one), and

the UndoMatchingProgressAtOrigin routine is invoked to “clean” the solution pairs of

PS1 node (solution pair {SDN3, SDN1} is deleted).

Figure C.3: Undoing a matching at the origin (Relative dependence not fulfilled).

This routine internally invokes the UndoMatchingProgress routine (18) to perform

the operations herein described.

The UndoMatchingProgress routine (18) evaluates if the indicated node has any

solution pair for the indicated signature (as a referenced signature). A node is skipped

if it has not been evaluated yet from the dependence viewpoint or if the dependence

is not relative (line 2). Otherwise, every generated pair that points to the received

signature is deleted (lines 3-12).

308

C.2 Validation Algorithm

Routine 17 UndoMatchingProgressAtOrigin (Tree TSi, Signature rSignature, Node
rNode)

1: for each Node n ∈ TSi[0] do
2: if n 6= rNode then
3: UndoMatchingProgress(TSi, n, rSignature, rNode)
4: end if
5: end for

Once every solution pair that pointed to the referenced signature has been deleted,

it must be checked which signatures matched with this node are not included (as origin

signatures) anymore in the solution pairs (in any relative dependence) (lines 13-30). In

that cases, a progressive unmatching is carried out (line 24).

The TSi tree is explored following the paths of the children nodes of the particular

node (line 31).

Undoing a matching at the destination

When the relative dependence of a node is evaluated, it is possible that some sig-

natures matched with the referenced node are not included in the solution pairs as the

referenced signature (see Section Relative timing and sequence evaluation C.2.4.3). In

those cases, the UndoMatchingProgressAtDestination routine (19) is invoked to undo

the matching between the referenced node n and the indicated signature s, and to

“clean” the solution pairs therein created (if any). Basically, this routine performs four

tasks:

1. Node n is analyzed. Every solution pair therein created (obviously, node n must

have been processed from a dependence viewpoint – line 3), is checked. Every

pair that has, as the origin signature, the indicated one (see line 7), is deleted

(line 8).

2. As the signature s is not included in the pairs anymore, it is deleted from the

matched signatures of node n (line 13).

3. In order to maintain the consistence of the tree, the UndoMatchingProgressAt-

Destination routine is invoked for every referenced signature that is not included

in the solution pairs anymore (lines 17–28).

4. Finally, and as a result of the unmatching between the signature and the node,

UndoMatchingProgessAtOrigin is invoked (line 29).

309

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 18 UndoMatchingProgress (Tree TSi, Node node, Signature rSignature, Node
rNode)

1: dependence ← node.timingAndSequence
2: if dependence is relative then
3: for each dependence d ∈ node do
4: if d→ referencedNode == rNode then
5: solutionPairs ← d.solutionPairs
6: for each solutionPair ∈ solutionPairs do
7: if solutionPair → referencedSignature == rSignature then
8: remove solutionPair
9: end if

10: end for
11: end if
12: end for
13: for each Signature s ∈ node.matchedSignatures do
14: for each dependence d ∈ node do
15: solutionPairs ← d.solutionPairs
16: for each solutionPair ∈ solutionPairs do
17: if solutionPair → originSignature == s then
18: maintain this signature s as matched signature for node

19: found ← true
20: end if
21: end for
22: end for
23: if !found then
24: UndoMatching(s,node)
25: if |s.matchedNodes| == 0 OR |node.matchedSignatures| == 0 then
26: throw Deadlock
27: end if
28: UndoMatchingProgressAtOrigin(TSi, s, node)
29: end if
30: end for
31: for each childrenNode cn ∈ node do
32: UndoMatchingProgress(TSi, cn, rSignature, rNode)
33: end for
34: end if

Figure C.4 shows an example where a matching at destination has to be undone.

Let suppose that nodes PS4 and PS5 have already been processed. When the algorithm

evaluates the relative dependence of PS2 node, it detects that signature SDN6 matched

with PS3 node is not contained as a referenced signature in any generated solution pair.

310

C.2 Validation Algorithm

Figure C.4: Undoing a matching at the destination (Relative dependence not fulfilled).

Therefore, the UndoMatchingProgressAtDestination routine will review the solution

pairs in PS3 in which signature SDN6 appears as origin signature, deleting solution pair

{SDN6, SDN7} (task one). Consequently, the matching between signature SDN6 and

PS3 node, is undone (task two). In this particular case, no referenced signature has

been completely deleted from solution pairs of node PS3 (only signature SDN7 was

referenced), and thus the UndoMatchingProgressAtDestination does not have to be

invoked (as said in task 3). However, and as the matching between signature SDN6

and node PS3 has been undone, the UndoMatchingProgessAtOrigin routine is invoked

(task four), but without producing any effect on the tree.

311

C. EXTENDED SIGNATURE POLICY VALIDATION ALGORITHM

Routine 19 UndoMatchingProgressAtDestination (Tree TSi, Signature s, Node n)

1: dependence ← n.timingAndSequence
2: deletedSolutions ← new List()
3: if dependence is relative then
4: for each dependence d ∈ n do
5: solutionPairs ← d.solutionPairs
6: for each solutionPair ∈ solutionPairs do
7: if solutionPair → originSignature == s then
8: remove solutionPair from solutionsPairs
9: deletedSolutions.add(solutionPair)

10: end if
11: end for
12: end for
13: UndoMatching(s, n)
14: if |s.matchedNodes| == 0 OR |n.matchedSignatures| == 0 then
15: throw Deadlock
16: end if
17: for each deletedSolution ds ∈ deletedSolutions do
18: for each dependence d ∈ n do
19: for each solutionPair sp ∈ solutionPairs do
20: if ds→ referencedSignature == sp→ referencedSignature then
21: found ← true
22: end if
23: end for
24: end for
25: if !found then
26: UndoMatchingProgressAtDestination(TSi, ds → referencedSignature,

ds→ referencedNode)
27: end if
28: end for
29: UndoMatchingProgressAtOrigin(TSi, s, n)
30: else
31: UndoMatching(s, n)
32: if |s.matchedNodes| == 0 OR |n.matchedSignatures| == 0 then
33: throw Deadlock
34: end if
35: UndoMatchingProgressAtOrigin(TSi, s, n)
36: end if

312

Appendix D

Test Cases for the Extended

Signature Policy Validation

Algorithm

This Appendix details the test cases executed to verify the correctness of the validation

algorithm designed for the extended signature policy framework. Section D.1 contains

the textual representation used to describe the test cases, and by which the space

needed for the description of the tests is reduced, and the descriptions homogenized.

Sections D.2 and D.3 include the trees of signatures and set of signatures used for the

test cases, respectively, while the results of the test cases are given in Section D.4.

D.1 Textual Representation of a Tree

The notation given in Chapter 1 is used in the textual representation of a tree, explained

herein.

Nodes in first level of the tree correspond to primary signatures (PS), while nodes

located in subsequent levels are countersignatures (CS). Depending on the type of tree

being represented (Tree of Signatures, TSi, or Set of Signatures, SSi), the information

for each node differs. A node of a TSi is textually represented as follows:

node ::= [nodeUnit + node] | [nodeUnit]

nodeUnit ::= id type (signerId/ {sp} / {ct} /TS)

where:

• id is the identifier that uniquely identifies this node among the rest of TSis nodes.

• type can be is either PS or CS.

313

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

• signerId is the node’s signer identifier (e.g. PS2, CS4). A signer identifier does

not depend on the type of node. That is, a signer identifier PS3 is valid for a

node in a level different than the first one (reserved for primary signatures).

• sp is a list, between brackets, of acceptable signature policies that can be used

by the signer. Each signature policy is represented by the particular version used

by the signer (e.g. 1.0.1, 1.0.2, etc.). The rest of the URL (http://jlopez.

thesis.uc3m.es/SigPolicy/v) remains the same for every signature policy, as

commented in Section 10.3.1.2, and thus is not included in the representation.

• ct is a list, between brackets, of allowed commitment types that can be made

by the signer. As introduced in Section 10.3.1.2, the commitment types are

established in XAdES-EPES formats with an URI value. In order to reduce the

space needed for a particular commitment type, a mapping between the URIs

and a short value used for the representation is made, shown in Table D.1.

• TS can be either ATS or RTS. It is optional.

• countersignatures are represented by including nodes inside a node. They are

separated by symbol +. They are optional.

A RTS is represented by a reference to the node’s unique identifier on which it

has the dependence (RTS (id)). If a maximum delta exists, then it is represented as

Commitment type indication URI Value

http://uri.etsi.org/01903/v1.2.2#ProofOfCreation 2.0.1

http://uri.etsi.org/01903/v1.2.2#ProofOfApproval 2.0.2

http://uri.etsi.org/01903/v1.2.2#ProofOfDelivery 2.0.3

http://uri.etsi.org/01903/v1.2.2#ProofOfStorage 2.0.4

http://uri.etsi.org/01903/v1.2.2#ProofOfAcknowledgment 2.0.5

http://uri.etsi.org/01903/v1.2.2#ProofOfReview 2.0.6

http://uri.etsi.org/01903/v1.2.2#ProofOfSecondReview 2.0.7

http://uri.etsi.org/01903/v1.2.2#ProofOfThirdReview 2.0.8

http://uri.etsi.org/01903/v1.2.2#ProofOfFourthReview 2.0.9

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin1 0.1

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt1 0.2

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin2 0.3

http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt2 0.4

http://uri.etsi.org/01903/v1.2.2#NonRepudiationEvidence 0.5

Table D.1: Mapping between xades:CommitmentTypeIndication URIs and values used
for the representation of TSis and SSis

314

http://jlopez.thesis.uc3m.es/SigPolicy/v
http://jlopez.thesis.uc3m.es/SigPolicy/v
http://uri.etsi.org/01903/v1.2.2#ProofOfCreation
http://uri.etsi.org/01903/v1.2.2#ProofOfApproval
http://uri.etsi.org/01903/v1.2.2#ProofOfDelivery
http://uri.etsi.org/01903/v1.2.2#ProofOfStorage
http://uri.etsi.org/01903/v1.2.2#ProofOfAcknowledgment
http://uri.etsi.org/01903/v1.2.2#ProofOfReview
http://uri.etsi.org/01903/v1.2.2#ProofOfSecondReview
http://uri.etsi.org/01903/v1.2.2#ProofOfThirdReview
http://uri.etsi.org/01903/v1.2.2#ProofOfFourthReview
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin1
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt1
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfOrigin2
http://uri.etsi.org/01903/v1.2.2#PartialNonRepudiationOfReceipt2
http://uri.etsi.org/01903/v1.2.2#NonRepudiationEvidence

D.1 Textual Representation of a Tree

RTS (id, ∆ (0, 0, 10, 1)).

Next TSi textual representation indicates that the TSi has two Primary Signatures

with one CounterSignature each, having the first PS an absolute timing and sequence

dependence, and the second one a relative dependence on the first one:

[1 PS(PS1/ {sp1, sp2} / {ct1, ct2, ct3} /ATS20000131120000)+[2 CS(CS1/ {sp1} / {ct4})]]+
[3 PS(PS2/ {sp1, sp2} / {ct1, ct3} /RTS(1)) + [4 CS(CS2/ {sp2} / {ct3})]]

On the other hand, a signature of a SSi is represented with the next information:

signature ::= [signatureUnit + signature] | [signatureUnit]

signatureUnit ::= subjectDN/sp/ct/signingT ime

where:

• subjectDN is the subject distinguished name that identifies the signer.

• sp corresponds to the version of the signature policy used by the signer when

generating the signature.

• ct corresponds to the value mapped to the commitment type (URI) made by the

signer (see table D.1).

• signingTime is the time at which the signer performed the signature. For clarity

purposes, the time value will be represented in yyyymmddhhmmss format (e.g.

19970717000000). This field is optional.

• countersignatures are represented by including signatures inside a signature. They

are separated by symbol +. It is optional.

It is supposed that every signature has referenced the same extended signature pol-

icy when generating the signature. As that information will not vary in any test case,

it is not included in the textual representation of the TSis and SSis.

The next example shows a SSi textual representation where there are two Primary

Signatures in the first level, and one CounterSignature generated over the second one:

[subjectDN1/sp1/ct1/20000131110000] + [subjectDN2/sp1/ct2/20000131120000+

[subjectDN3/sp1/ct3]]

315

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

D.2 Trees of Signatures for the Test Cases

Next, the TSis that have been used as input for the test cases are defined following the

textual representation explained in Section D.1.

TSi Tree structure
tsi 00 v0 [1 PS(PS1/ {1.0.1, 1.0.2} / {2.0.1, 2.0.2})]
tsi 00 v1 [1 PS(PS1/ {1.0.1, 1.0.2} / {2.0.1, 2.0.2} /ATS19970717000000−20170717000000)]

Table D.2: TSis with one Primary Signature.

TSi Tree structure
tsi 01 v0 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.1} / {2.0.1})] +

[3 PS(PS3/ {1.0.1} / {2.0.1})]
tsi 01 v1 [1 PS(PS1/ {1.0.1} / {2.0.1})]+[2 PS(PS2/ {1.0.1} / {2.0.1} /RTS(1))]+

[3 PS(PS3/ {1.0.1} / {2.0.1} /RTS(2))]
tsi 01 v2 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.1} / {2.0.1} /

RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS3/ {1.0.1} / {2.0.1} /RTS(2, ∆(0, 0, 1, 0)))]
tsi 01 v3 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.1} / {2.0.1})] +

[3 PS(PS3/ {1.0.1} / {2.0.1})]
tsi 01 v4 [1 PS(PS1/ {1.0.1} / {2.0.1})]+[2 PS(PS1/ {1.0.1} / {2.0.1} /RTS(1))]+

[3 PS(PS3/ {1.0.1} / {2.0.1} /RTS(2))]
tsi 01 v5 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.1} / {2.0.1} /

RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS3/ {1.0.1} / {2.0.1} /RTS(2, ∆(0, 0, 1, 0)))]
tsi 01 v6 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.1} / {2.0.1})] +

[3 PS(PS1/ {1.0.1} / {2.0.1})]
tsi 01 v7 [1 PS(PS1/ {1.0.1} / {2.0.1})]+[2 PS(PS2/ {1.0.1} / {2.0.1} /RTS(1))]+

[3 PS(PS1/ {1.0.1} / {2.0.1} /RTS(2))]
tsi 01 v8 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.1} / {2.0.1} /

RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS1/ {1.0.1} / {2.0.1} /RTS(2, ∆(0, 0, 1, 0)))]
tsi 01 v9 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.1} / {2.0.1})] +

[3 PS(PS1/ {1.0.1} / {2.0.1})]
tsi 01 v10 [1 PS(PS1/ {1.0.1} / {2.0.1})]+[2 PS(PS1/ {1.0.1} / {2.0.1} /RTS(1))]+

[3 PS(PS1/ {1.0.1} / {2.0.1} /RTS(2))]
tsi 01 v11 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.1} / {2.0.1} /

RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS1/ {1.0.1} / {2.0.1} /RTS(2, ∆(0, 0, 1, 0)))]
tsi 01 v12 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.2} / {2.0.2})] +

[3 PS(PS3/ {1.0.3} / {2.0.3})]
tsi 01 v13 [1 PS(PS1/ {1.0.1} / {2.0.1})]+[2 PS(PS2/ {1.0.2} / {2.0.2} /RTS(1))]+

[3 PS(PS3/ {1.0.3} / {2.0.3} /RTS(2))]
tsi 01 v13b [3 PS(PS3/ {1.0.2} / {2.0.2} /RTS(2))] +

[2 PS(PS2/ {1.0.1} / {2.0.1} /RTS(1))] +
[1 PS(PS1/ {1.0.1} / {2.0.1} /RTS(2))]

tsi 01 v14 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.2} / {2.0.2} /
RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS3/ {1.0.3} / {2.0.3} /RTS(2, ∆(0, 0, 1, 0)))]

tsi 01 v15 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.2} / {2.0.2} /
RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS1/ {1.0.3} / {2.0.3} /RTS(2, ∆(0, 0, 1, 0)))]

tsi 01 v16 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS1/ {1.0.1} / {2.0.1} /
RTS(1, ∆(0, 0, 1, 0)))]+[3 PS(PS1/ {1.0.2} / {2.0.2} /RTS(2, ∆(0, 0, 1, 0)))]

316

D.2 Trees of Signatures for the Test Cases

tsi 01 v17 [3 PS(PS3/ {1.0.3} / {2.0.3} /RTS(2, ∆(0, 0, 5, 0)))] +
[2 PS(PS2/ {1.0.1} / {2.0.1} / ATS20090718101000−20090718103000)] +
[1 PS(PS1/ {1.0.1} / {2.0.1} / ATS20090718100000−20090718101500)]

Table D.3: TSis with three Primary Signatures.

TSi Tree structure
tsi 02 v0 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [2 CS(CS1 PS1/ {1.0.1} / {2.0.1})]]
tsi 02 v1 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [2 CS(PS1/ {1.0.1} / {2.0.1})]]
tsi 02 v2 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [2 CS(CS1 PS1/ {1.0.2} / {2.0.2})]]
tsi 02 v3 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [2 CS(PS1/ {1.0.2} / {2.0.2})]]
tsi 02 v4 [1 PS(PS1/ {1.0.1} / {2.0.1})+[2 CS(CS1 PS1/ {1.0.2} / {2.0.2} /RTS(1))]]
tsi 02 v5 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [2 CS(CS1 PS1/ {1.0.2} / {2.0.2} /

RTS(1, ∆(0, 0, 1, 0)))]]

Table D.4: TSis with one Primary Signature and one CounterSignature each.

TSi Tree structure
tsi 03 v0 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(PS1/ {1.0.1} / {2.0.1})] +

[4 CS(PS2/ {1.0.1} / {2.0.1}) + [7 CS(CS3/ {1.0.3} / {2.0.3})]]] +
[2 PS(PS2/ {1.0.1} / {2.0.1}) + [5 CS(CS5/ {1.0.5} / {2.0.5})] +
[6 CS(CS6/ {1.0.6} / {2.0.6})]]

tsi 03 v1 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(CS3/ {1.0.1} / {2.0.1})] +
[4 CS(PS2/ {1.0.1} / {2.0.1}) + [7 CS(CS4/ {1.0.3} / {2.0.3})]]] +
[2 PS(PS2/ {1.0.1} / {2.0.1}) + [5 CS(CS5/ {1.0.5} / {2.0.5})] +
[6 CS(CS6/ {1.0.6} / {2.0.6})]]

tsi 03 v2 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(PS3/ {1.0.1} / {2.0.1})] +
[4 CS(CS4/ {1.0.1} / {2.0.1}) + [7 CS(CS5/ {1.0.3} / {2.0.3})]]] +
[2 PS(PS3/ {1.0.1} / {2.0.1}) + [5 CS(CS6/ {1.0.5} / {2.0.5})] +
[6 CS(CS7/ {1.0.6} / {2.0.6})]]

tsi 04 v0 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(PS2/ {1.0.2} / {2.0.2})] +
[4 CS(CS1/ {1.0.2} / {2.0.2})]] + [2 PS(PS2/ {1.0.2} / {2.0.2})]

tsi 05 v0 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(CS2/ {1.0.2} / {2.0.2})] +
[4 CS(CS2/ {1.0.2} / {2.0.2})]] + [2 PS(PS1/ {1.0.1} / {2.0.1}) +
[5 CS(CS2/ {1.0.2} / {2.0.2})] + [6 CS(CS3/ {1.0.3} / {2.0.3})]]

tsi 05 v1 [1 PS(PS1/ {1.0.1} / {2.0.1}) + [3 CS(CS2/ {1.0.2} / {2.0.2})] +
[4 CS(CS3/ {1.0.2} / {2.0.2})]] + [2 PS(PS1/ {1.0.1} / {2.0.1}) +
[5 CS(CS2/ {1.0.2} / {2.0.2})] + [6 CS(CS3/ {1.0.3} / {2.0.3})]]

tsi 05 v2 [1 PS(PS1/ {1.0.1} / {2.0.1})+[3 CS(CS3/ {1.0.1} / {2.0.1} /RTS(4))]+
[4 CS(CS4/ {1.0.2} / {2.0.2})]] + [2 PS(PS2/ {1.0.1} / {2.0.1}) +
[5 CS(CS5/ {1.0.2} / {2.0.2})] + [6 CS(CS6/ {1.0.1} / {2.0.1})]]

tsi 06 v0 [1 PS(PS1/ {1.0.1} / {2.0.1})] + [2 PS(PS2/ {1.0.2} / {2.0.2}) +
[4 CS(CS1 PS2/ {1.0.4} / {2.0.4})]+[5 CS(CS2 PS2/ {1.0.5} / {2.0.5})]]+
[3 PS(PS3/ {1.0.3} / {2.0.3})]

tsi 06 v1 [1 PS(PS1/ {1.0.1} / {2.0.1} /RTS(3, ∆(0, 0, 1, 0)))] +
[2 PS(PS2/ {1.0.2} / {2.0.2} /RTS(1, ∆(0, 0, 1, 0))) +
[4 CS(CS1 PS2/ {1.0.4} / {2.0.4} /RTS(2, ∆(0, 0, 1, 0)))] +
[5 CS(CS2 PS2/ {1.0.5} / {2.0.5} /RTS(4, ∆(0, 0, 1, 0))/
RTS(2, ∆(0, 0, 2, 0)))]] + [3 PS(PS3/ {1.0.3} / {2.0.3} /

317

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

ATS20070717000000−20070717091500)]

Table D.5: TSis with several levels of depth.

TSi Tree structure
tsi OFEPSP + main [1 PS(origin/ {1.0} / {0.1})] +

[2 PS(receiver/ {1.0} / {0.2} /RTS(1, ∆(0, 5, 0, 0)))+
[3 CS(origin/ {1.0} / {0.3} /RTS(2, ∆(0, 15, 0, 0))) +
[4 CS(receiver/ {1.0} / {0.4} /RTS(3, ∆(0, 5, 0, 0)))+
[5 CS(origin/ {1.0} / {0.5} /RTS(4, ∆(0, 15, 0, 0)))]]]]

tsi OFEPSP + recovery [1 PS(origin/ {1.0} / {0.1})] +
[2 PS(receiver/ {1.0} / {0.2} /RTS(1, ∆(0, 5, 0, 0)))+
[3 CS(origin/ {1.0} / {0.3} /RTS(2, ∆(0, 15, 0, 0))) +
[4 CS(receiver/ {1.0} / {0.4} /RTS(3, ∆(0, 5, 0, 0)))+
[5 CS(ttp/ {1.0} / {0.5} /RTS(4, ∆(0, 5, 0, 0)))]]]]

Table D.6: TSis for OFEPSP+ protocol (see Chapter 9).

D.3 Set of Signatures for the Test Cases

Next, the SSis that have been used as input for the test cases are defined following the

textual representation explained in Section D.1.

SSi Tree structure
ssi 00 v0 [subjectDN1/1.0.1/2.0.1]
ssi 00 v1 [subjectDN1/1.0.20/2.0.1]
ssi 00 v2 [subjectDN1/1.0.1/2.0.20]
ssi 01 v0 [subjectDN1/1.0.1/2.0.1/20070717000000]
ssi 01 v1 [subjectDN1/1.0.1/2.0.1/19970617000000]
ssi 01 v2 [subjectDN1/1.0.1/2.0.1/20170817000000]

Table D.7: SSis with one Primary Signature.

SSi Tree structure
ssi 02 v0 [subjectDN1/1.0.1/2.0.1/20000717000000] +

[subjectDN2/1.0.1/2.0.1/20000717000100] +
[subjectDN3/1.0.1/2.0.1/20000717000200]

ssi 02 v1 [subjectDN1/1.0.1/2.0.1/20000717000000] +
[subjectDN1/1.0.1/2.0.1/20000717000100] +
[subjectDN3/1.0.1/2.0.1/20000717000200]

ssi 02 v2 [subjectDN1/1.0.1/2.0.1/20000717000000] +
[subjectDN1/1.0.1/2.0.1/20000717000100] +
[subjectDN1/1.0.1/2.0.1/20000717000200]

ssi 02 v3 [subjectDN1/1.0.1/2.0.1/20000717000000] +
[subjectDN2/1.0.1/2.0.1/20010717000000] +
[subjectDN3/1.0.1/2.0.1/20020717000000]

ssi 02 v4 [subjectDN1/1.0.2/2.0.2/20000717000000] +
[subjectDN2/1.0.3/2.0.3/20000717000100] +
[subjectDN3/1.0.1/2.0.1/20000717000200]

318

D.3 Set of Signatures for the Test Cases

ssi 02 v5 [subjectDN1/1.0.1/2.0.1/20000717000000] +
[subjectDN1/1.0.2/2.0.2/20000717000100] +
[subjectDN3/1.0.3/2.0.3/20000717000200]

ssi 02 v6 [subjectDN1/1.0.1/2.0.1/20000717000000] +
[subjectDN1/1.0.2/2.0.2/20000717000100] +
[subjectDN1/1.0.3/2.0.3/20000717000200]

ssi 02 v7 [subjectDN1/1.0.1/2.0.1/20000717000110] +
[subjectDN2/1.0.1/2.0.1/20000717000100] +
[subjectDN3/1.0.2/2.0.2/20000717000200]

ssi 02 v8 [subjectDN1/1.0.1/2.0.1/20000717000210] +
[subjectDN2/1.0.1/2.0.1/20000717000100] +
[subjectDN3/1.0.2/2.0.2/20000717000200]

ssi 02 v9 [subjectDN1/1.0.1/2.0.1/20090718101000] +
[subjectDN2/1.0.1/2.0.1/20090718110000] +
[subjectDN3/1.0.3/2.0.3/20090718120000]

Table D.8: SSis with three Primary Signatures.

SSi Tree structure
ssi 03 v0 [subjectDN1/1.0.1/2.0.1 + [subjectDN2/1.0.2/2.0.2]]
ssi 03 v1 [subjectDN1/1.0.1/2.0.1 + [subjectDN1/1.0.2/2.0.2]]
ssi 04 v0 [subjectDN1/1.0.1/2.0.1 + [subjectDN2/1.0.1/2.0.1] +

[subjectDN3/1.0.1/2.0.1 + [subjectDN4/1.0.3/2.0.3]]] +
[subjectDN2/1.0.1/2.0.1 + [subjectDN5/1.0.5/2.0.5] +
[subjectDN6/1.0.6/2.0.6]]

ssi 05 v0 [subjectDN1/1.0.1/2.0.1 + [subjectDN3/1.0.2/2.0.2] +
[subjectDN4/1.0.2/2.0.2]] + [subjectDN2/1.0.2/2.0.2]

ssi 06 v0 [subjectDN1/1.0.1/2.0.1 + [subjectDN2/1.0.2/2.0.2] +
[subjectDN2/1.0.2/2.0.2]] + [subjectDN1/1.0.1/2.0.1 +
[subjectDN2/1.0.2/2.0.2] + [subjectDN3/1.0.3/2.0.3]]

ssi 06 v1 [subjectDN1/1.0.1/2.0.1 + [subjectDN2/1.0.2/2.0.2] +
[subjectDN3/1.0.3/2.0.3]] + [subjectDN1/1.0.1/2.0.1 +
[subjectDN2/1.0.2/2.0.2] + [subjectDN3/1.0.3/2.0.3]]

ssi 06 v2 [subjectDN1/1.0.1/2.0.1+[subjectDN3/1.0.1/2.0.1/20000101100002]+
[subjectDN4/1.0.2/2.0.2/20000101100003]] +
[subjectDN2/1.0.1/2.0.1+[subjectDN5/1.0.2/2.0.2/20000101100000]+
[subjectDN6/1.0.1/2.0.1/20000101100001]]

ssi 06 v3 [subjectDN1/1.0.1/2.0.1+[subjectDN3/1.0.1/2.0.1/20000101100002]+
[subjectDN4/1.0.2/2.0.2/20000101100003]] +
[subjectDN2/1.0.1/2.0.1+[subjectDN5/1.0.2/2.0.2/20000101100001]+
[subjectDN6/1.0.1/2.0.1/20000101100000]]

ssi 07 v0 [subjectDN1/1.0.1/2.0.1/20070717090000] +
[subjectDN2/1.0.2/2.0.2/20070717093000 +
[subjectDN4/1.0.4/2.0.4/20070717100000] +
[subjectDN5/1.0.5/2.0.5/20070717103000]] +
[subjectDN3/1.0.3/2.0.3/20070717083000]

Table D.9: SSis with several levels of depth.

319

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

SSi
Tree structure

ssi OFEPSP+
main

[CN = Buyer, O = Internet/1.0/0.1/20090717202700] +
[CN = Seller, O = Internet/1.0/0.2/20090717203100 +
[CN = Buyer, O = Internet/1.0/0.3/20090717204100 +
[CN = Seller, O = Internet/1.0/0.4/20090717204300 +
[CN = Buyer, O = Internet/1.0/0.5/20090717205000]]]]

ssi OFEPSP+
main2

[CN = Buyer, O = Internet/1.0/0.1/20090717202700] +
[CN = Seller, O = Internet/1.0/0.2/20090717203100 +
[CN = Buyer, O = Internet/1.0/0.3/20090717205100 +
[CN = Seller, O = Internet/1.0/0.4/20090717205300 +
[CN = Buyer, O = Internet/1.0/0.5/20090717206000]]]]

ssi OFEPSP+
recovery

[CN = Buyer, O = Internet/1.0/0.1/20090717202700] +
[CN = Seller, O = Internet/1.0/0.2/20090717203100 +
[CN = Buyer, O = Internet/1.0/0.3/20090717204100 +
[CN = Seller, O = Internet/1.0/0.4/20090717204300 +
[CN = TTP, O = Internet/1.0/0.5/20090717204500]]]]

Table D.10: SSis for OFEPSP+ protocol (see Chapter 9).

D.4 Test Cases

Next Tables D.11, D.121, D.13 and D.14 collect the test cases executed to validate the

correct design and implementation of the algorithm. Each test case includes the SSi

and TSi evaluated, the test result (OK, if the SSi satisfies the TSi, FAIL otherwise)

and the reason in case the SSi does not satisfy the TSi. It should be mentioned that

more test cases than those shown in the Tables have been executed (188 in total), but

have not been included in the Tables if the execution path, result and reason did not

differ from the included test cases.

SSi TSi Result Reason
ssi 00 v0 tsi 00 v0 OK

tsi 00 v1 FAIL ATS not fulfilled (no signingT ime)
tsi 01 v0 FAIL SSi and TSi have different distributions
tsi 01 v1 FAIL SSi and TSi have different distributions
tsi 01 v2 FAIL SSi and TSi have different distributions
tsi 02 v0 FAIL Deadlock (distribution-based pruning)
tsi 02 v1 FAIL Deadlock (distribution-based pruning)
tsi 02 v2 FAIL Deadlock (distribution-based pruning)
tsi 02 v3 FAIL Deadlock (distribution-based pruning)
tsi 03 v0 FAIL SSi and TSi have different distributions

ssi 00 v1 tsi 00 v0 FAIL Deadlock when exploring signer subjectDN1 (due
to sp)

1Though test cases from tsi 01 v3 to tsi 01 v11 take SSis and TSis with the same number of nodes

in the single level, the distribution differs due to the existent dimensions for each distribution. Thus,

SSi and TSi are not structurally equal. Same reason applies to other test cases in other tables.

320

D.4 Test Cases

tsi 00 v1 FAIL Deadlock when exploring signer subjectDN1 (due
to sp)

tsi 03 v0 FAIL SSi and TSi have different distributions
ssi 00 v2 tsi 00 v0 FAIL Deadlock when exploring signer subjectDN1 (due

to ct)
tsi 00 v1 FAIL Deadlock when exploring signer subjectDN1 (due

to ct)
ssi 01 v0 tsi 00 v0 OK

tsi 00 v1 OK
ssi 01 v1 tsi 00 v0 OK

tsi 00 v1 FAIL ATS not fulfilled (signingT ime before allowed)
ssi 01 v2 tsi 00 v0 OK

tsi 00 v1 FAIL ATS not fulfilled (signingT ime after allowed)

Table D.11: Test cases defined for SSis with one level of depth and one Primary Signa-
tures.

SSi TSi Result Reason
ssi 02 v0 tsi 00 v0 FAIL SSi and TSi have different distributions

tsi 00 v1 FAIL SSi and TSi have different distributions
tsi 01 v0 OK
tsi 01 v1 OK
tsi 01 v2 OK
tsi 01 v3 FAIL SSi and TSi have different distributions
tsi 01 v4 FAIL SSi and TSi have different distributions
tsi 01 v5 FAIL SSi and TSi have different distributions
tsi 01 v6 FAIL SSi and TSi have different distributions
tsi 01 v7 FAIL SSi and TSi have different distributions
tsi 01 v8 FAIL SSi and TSi have different distributions
tsi 01 v9 FAIL SSi and TSi have different distributions
tsi 01 v10 FAIL SSi and TSi have different distributions
tsi 01 v11 FAIL SSi and TSi have different distributions
tsi 01 v12 FAIL Deadlock when exploring signer subjectDN2

(signer subjectDN1 was definitely assigned to node
1 PS)

tsi 01 v13 FAIL Deadlock when exploring signer subjectDN2
(signer subjectDN1 was definitely assigned to node
1 PS)

tsi 01 v14 FAIL Deadlock when exploring signer subjectDN2
(signer subjectDN1 was definitely assigned to node
1 PS)

tsi 02 v0 FAIL SSi and TSi have different distributions
tsi 02 v1 FAIL SSi and TSi have different distributions
tsi 02 v2 FAIL SSi and TSi have different distributions
tsi 02 v3 FAIL SSi and TSi have different distributions
tsi 03 v0 FAIL SSi and TSi have different distributions

ssi 02 v1 tsi 00 v0 FAIL SSi and TSi have different distributions
tsi 00 v1 FAIL SSi and TSi have different distributions
tsi 01 v0 FAIL SSi and TSi have different distributions
tsi 01 v1 FAIL SSi and TSi have different distributions

321

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

tsi 01 v2 FAIL SSi and TSi have different distributions
tsi 01 v3 OK
tsi 01 v4 OK
tsi 01 v5 OK
tsi 01 v6 OK
tsi 01 v7 FAIL RTS not fulfilled
tsi 01 v8 FAIL RTS not fulfilled
tsi 01 v9 FAIL SSi and TSi have different distributions
tsi 01 v10 FAIL SSi and TSi have different distributions
tsi 01 v11 FAIL SSi and TSi have different distributions
tsi 01 v12 FAIL SSi and TSi have different distributions
tsi 01 v13 FAIL SSi and TSi have different distributions
tsi 01 v14 FAIL SSi and TSi have different distributions
tsi 02 v0 FAIL SSi and TSi have different distributions
tsi 02 v1 FAIL SSi and TSi have different distributions
tsi 02 v2 FAIL SSi and TSi have different distributions
tsi 02 v3 FAIL SSi and TSi have different distributions
tsi 03 v0 FAIL SSi and TSi have different distributions

ssi 02 v2 tsi 00 v0 FAIL SSi and TSi have different distributions
tsi 00 v1 FAIL SSi and TSi have different distributions
tsi 01 v0 FAIL SSi and TSi have different distributions
tsi 01 v1 FAIL SSi and TSi have different distributions
tsi 01 v2 FAIL SSi and TSi have different distributions
tsi 01 v3 FAIL SSi and TSi have different distributions
tsi 01 v4 FAIL SSi and TSi have different distributions
tsi 01 v5 FAIL SSi and TSi have different distributions
tsi 01 v6 FAIL SSi and TSi have different distributions
tsi 01 v7 FAIL SSi and TSi have different distributions
tsi 01 v8 FAIL SSi and TSi have different distributions
tsi 01 v9 OK
tsi 01 v10 OK
tsi 01 v11 OK
tsi 01 v12 FAIL SSi and TSi have different distributions
tsi 01 v13 FAIL SSi and TSi have different distributions
tsi 01 v14 FAIL SSi and TSi have different distributions
tsi 01 v15 FAIL Deadlock in refinement phase two (node 2 PS)
tsi 01 v16 FAIL Deadlock in refinement phase two (node 3 PS)
tsi 02 v0 FAIL SSi and TSi have different distributions
tsi 02 v1 FAIL SSi and TSi have different distributions
tsi 02 v2 FAIL SSi and TSi have different distributions
tsi 02 v3 FAIL SSi and TSi have different distributions
tsi 03 v0 FAIL SSi and TSi have different distributions

ssi 02 v3 tsi 01 v2 FAIL RTS not fulfilled
tsi 01 v14 FAIL Deadlock when exploring signer subjectDN2

(signer subjectDN1 was definitely assigned to node
1 PS)

ssi 02 v4 tsi 01 v0 FAIL Deadlock when exploring signer with sp = 1.0.2
and ct = 2.0.2

tsi 01 v3 FAIL SSi and TSi have different distributions
tsi 01 v4 FAIL SSi and TSi have different distributions

322

D.4 Test Cases

tsi 01 v5 FAIL SSi and TSi have different distributions
tsi 01 v6 FAIL SSi and TSi have different distributions
tsi 01 v7 FAIL SSi and TSi have different distributions
tsi 01 v8 FAIL SSi and TSi have different distributions
tsi 01 v9 FAIL SSi and TSi have different distributions
tsi 01 v10 FAIL SSi and TSi have different distributions
tsi 01 v11 FAIL SSi and TSi have different distributions
tsi 01 v12 OK
tsi 01 v13 FAIL RTS not fulfilled
tsi 01 v14 FAIL RTS not fulfilled

ssi 02 v5 tsi 01 v3 FAIL Deadlock when exploring signer with sp = 1.0.2
and ct = 2.0.2

tsi 01 v6 FAIL Deadlock when exploring signer with sp = 1.0.2
and ct = 2.0.2

ssi 02 v6 tsi 01 v9 FAIL Deadlock when exploring signer with sp = 1.0.2
and ct = 2.0.2

tsi 01 v14 FAIL SSi and TSi have different distributions
tsi 01 v15 OK

ssi 02 v7 tsi 01 v13b OK
ssi 02 v8 tsi 01 v13b FAIL Deadlock in refinement phase three (node 2 PS2)
ssi 02 v9 tsi 01 v13b FAIL Deadlock in refinement phase three

Table D.12: Test cases defined for SSis with one level of depth and three Primary Signa-
tures.

SSi TSi Result Reason
ssi 03 v0 tsi 00 v0 FAIL Deadlock (distribution-based pruning)

tsi 01 v9 FAIL SSi and TSi have different distributions
tsi 02 v0 FAIL Deadlock for countersignature subjectDN2
tsi 02 v1 FAIL Deadlock for countersignature subjectDN2
tsi 02 v2 OK
tsi 02 v3 FAIL Deadlock for countersignature subjectDN2 (signer

identifier PS1 of child node was definitely assigned
to subjectDN1)

ssi 03 v1 tsi 02 v0 FAIL Deadlock for countersignature subjectDN1
tsi 02 v1 FAIL Deadlock for countersignature subjectDN1
tsi 02 v2 FAIL Deadlock for countersignature subjectDN1, as its

subjectDN was definitely assigned to signer iden-
tifier PS1, and child node has signer identifier
CS1 PS1

tsi 02 v3 OK
ssi 04 v0 tsi 03 v0 FAIL Deadlock when backtracking at first node in first

level. Initially assigned nodes’ signer identifiers
PS1 and PS2 are definitely assigned to coun-
tersignatures subjectDN2 and subjectDN3. The
identifier-based pruning deletes node PS1 from the
matching. Afterwards, the path-based pruning
deletes the remaining matched node PS2, and thus
there is a deadlock at subjectDN1

323

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

tsi 03 v1 FAIL Deadlock when exploring S2 in first level, as PS2 is
definitely assigned to subjectDN . An path-based
pruning is performed at signature S1 in first level
while backtracking. Therefore, a refinement over
children nodes is produced before analyzing child
subjectDN3 of subjectDN1

tsi 03 v2 OK
tsi 04 v0 FAIL Deadlock for countersignature subjectDN2

ssi 05 v0 tsi 04 v0 FAIL Deadlock in refining phase one and after apply-
ing identifier-based pruning during forwarding for
signer subjectDN3 (signer identifier PS2 was def-
initely assigned to subjectDN2)

ssi 06 v0 tsi 05 v0 OK
ssi 06 v1 tsi 05 v1 FAIL During refinement phase one, two nodes matched

with first subjectDN2 are initially pruned from ac-
tive nodes. Subsequently, the identifier-based prun-
ing prunes matched node CS3(1.0.2/2.0.2), as it is
definitely assigned to signer subjectDN3/sp3/2.0.3.
Furthermore, at path-based pruning, and basing
on active nodes array, one node remains (6 CS3).
That happens symmetrically for the other branch.
As a result, two first level signatures are both
matched with the same node 2. During refinement
phase two, the deadlock is detected (node 1 PS has
no visits)

ssi 06 v2 tsi 05 v2 OK
ssi 06 v3 tsi 05 v2 FAIL Deadlock while refining in phase One and after

pathBasedPruning (forwarding)
ssi 07 v0 tsi 06 v0 OK

tsi 06 v1 OK

Table D.13: Test cases defined for SSis with several levels of depth.

SSi TSi Result Reason
ssi OFEPSP + main tsi OFEPSP + main OK

tsiOFEPSP + recovery FAIL Deadlock for signer
CN = Buyer, O =
Internet when ex-
ploring its last signa-
ture (NRE)

ssi OFEPSP + recovery tsi OFEPSP + main FAIL Deadlock for signer
CN = TTP,O =
Internet when ex-
ploring its signature
(NRETTP)

tsi OFEPSP + recovery OK

324

D.4 Test Cases

ssi OFEPSP + main2 tsi OFEPSP + main FAIL RTS not fulfilled for
second signature of
CN = Buyer, O =
Internet

Table D.14: Test cases defined for OFEPSP+ protocol (see Chapter 9).

325

D. TEST CASES FOR THE EXTENDED SIGNATURE POLICY
VALIDATION ALGORITHM

326

Appendix E

ASN.1 and XML Schemas

E.1 Extended Signature Policy ASN.1 definition

ETS-ExtendedElectronicSignaturePolicies-97Syntax { iso(1) member-body(2)

us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0) 30 }

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS All

--IMPORTS

-- ===

-- Internet X.509 Public Key Infrastructure-Certificate and CRL Profile

-- RFC 2459 or RFC 3280 or RFC 5280

-- ===

--AlgorithmIdentifier, GeneralNames, DirectoryString

-- FROM PKIX1Explicit88

-- { iso(1) identified-organization(3) dod(6) internet(1) security(5)

-- mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit(18) }

--FROM PKIX1Explicit93

--{iso(1) identified-organization(3) dod(6) internet(1) security(5)

-- mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit-93(3)}

-- ===

-- CAdES: RFC 5126

-- ===

327

E. ASN.1 AND XML SCHEMAS

--SigPolicyQualifierInfo

-- FROM PKIXCAdES08

-- { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)

-- smime(16) id-aa(2) 15 }

-- ===

-- Electronic Signature Policies : RFC 3125

-- ===

--SelectedCommitmentTypes, SigningPeriod, SignPolExtensions, DeltaTime

--FROM ETS-ElectronicSignaturePolicies-97Syntax

--{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)

-- smime(16) id-mod(0) 8}

--;

-- ===

-- S/MIME Object Identifier arcs used in the present document

-- ===

-- S/MIME OID arc used in the present document

-- id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

-- rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

-- S/MIME Arcs

-- id-mod OBJECT IDENTIFIER ::= { id-smime 0 }

-- modules

-- id-spq OBJECT IDENTIFIER ::= { id-smime 5 }

-- signature policy qualifier

-- id-cti OBJECT IDENTIFIER ::= { id-smime 6 }

-- commitment type identifier

-- ===

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

328

E.1 Extended Signature Policy ASN.1 definition

--otherName [0] OtherName,

rfc822Name [1] IA5String,

dNSName [2] IA5String,

--x400Address [3] ORAddress,

-- directoryName [4] Name,

-- ediPartyName [5] EDIPartyName,

uniformResourceIdentifier [6] IA5String,

iPAddress [7] OCTET STRING,

registeredID [8] OBJECT IDENTIFIER }

DirectoryString ::= CHOICE {

teletexString TeletexString (SIZE (1..MAX)),

printableString PrintableString (SIZE (1..MAX)),

universalString UniversalString (SIZE (1..MAX)),

utf8String UTF8String (SIZE (1..MAX)),

bmpString BMPString (SIZE (1..MAX)) }

-- ===

SigPolicyQualifierInfo ::= SEQUENCE {

sigPolicyQualifierId SigPolicyQualifierId,

sigQualifier ANY DEFINED BY sigPolicyQualifierId }

SigPolicyQualifierId ::= OBJECT IDENTIFIER

id-spq-ets-uri OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)

rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-spq(5) 1}

SPuri ::= IA5String

id-spq-ets-unotice OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)

rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-spq(5) 2}

SPUserNotice ::= SEQUENCE {

noticeRef NoticeReference OPTIONAL,

explicitText DisplayText OPTIONAL}

NoticeReference ::= SEQUENCE {

organization DisplayText,

noticeNumbers SEQUENCE OF INTEGER }

329

E. ASN.1 AND XML SCHEMAS

DisplayText ::= CHOICE {

visibleString VisibleString (SIZE (1..200)),

bmpString BMPString (SIZE (1..200)),

utf8String UTF8String (SIZE (1..200)) }

-- ===

SelectedCommitmentTypes ::= SEQUENCE OF CHOICE {

empty NULL,

recognizedCommitmentType CommitmentType }

CommitmentType ::= SEQUENCE {

identifier CommitmentTypeIdentifier,

fieldOfApplication [0] FieldOfApplication OPTIONAL,

semantics [1] DirectoryString OPTIONAL }

CommitmentTypeIdentifier ::= OBJECT IDENTIFIER

FieldOfApplication ::= DirectoryString

SigningPeriod ::= SEQUENCE {

notBefore GeneralizedTime,

notAfter GeneralizedTime OPTIONAL }

SignPolExtensions ::= SEQUENCE OF SignPolExtn

SignPolExtn ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

extnValue OCTET STRING }

DeltaTime ::= SEQUENCE {

deltaSeconds INTEGER,

deltaMinutes INTEGER,

deltaHours INTEGER,

deltaDays INTEGER }

-- ===

-- Extended Signature Policy Specification

-- ===

ExtSignaturePolicy ::= SEQUENCE {

330

E.1 Extended Signature Policy ASN.1 definition

extSignPolicyInfo ExtSignPolicyInfo,

extSignPolicyProtection ExtSignPolicyProtection OPTIONAL

}

ExtSignPolicyInfo ::= SEQUENCE {

extSignPolicyIdentifier ExtSignPolicyIdentifier,

extSignValidationPolicy ExtSignValidationPolicy,

extSignContext [0] ExtSignContext OPTIONAL,

extSignPolExtensions [1] SignPolExtensions OPTIONAL

}

ExtSignPolicyProtection ::= SEQUENCE {

protectionAlg AlgorithmIdentifier,

protection BIT STRING

}

ExtSignPolicyIdentifier ::= SEQUENCE {

extSignPolicyId ExtSignPolicyId,

dateOfIssue GeneralizedTime,

policyIssuerName GeneralNames,

extSigPolicyQualifiers [0] SEQUENCE SIZE (1..MAX) OF SigPolicyQualifierInfo

OPTIONAL,

extSignPolExtensions [1] SignPolExtensions OPTIONAL

}

ExtSignPolicyId ::= OBJECT IDENTIFIER

ExtSignValidationPolicy ::= SEQUENCE {

signingPeriod [0] SigningPeriod,

treesOfSolutions [1] TreesOfSolutions,

extSignPolExtensions [2] SignPolExtensions OPTIONAL

}

TreesOfSolutions ::= SEQUENCE OF treeOfSignature TreeOfSignatures

TreeOfSignatures ::= SEQUENCE OF signature Signature

Signature ::= SEQUENCE {

identifier INTEGER (0..MAX),

signer INTEGER (0..MAX),

acceptableSignPolicies AcceptableSignPolicies,

331

E. ASN.1 AND XML SCHEMAS

allowedCommitmentTypes SelectedCommitmentTypes,

counterSignatures [0] TreeOfSignatures OPTIONAL,

timingAndSequence [1] TimingAndSequence OPTIONAL,

extSignPolExtensions [2] SignPolExtensions OPTIONAL

}

AcceptableSignPolicies ::= SEQUENCE OF signPolicyId SignPolicyId

SignPolicyId ::= OBJECT IDENTIFIER

TimingAndSequence ::= CHOICE {

absoluteTimingAndSequence [0] SigningPeriod,

relativeTimingAndSequence [1] SEQUENCE OF RelativeTimingAndSequence

}

RelativeTimingAndSequence ::= SEQUENCE {

pathToRefSignature SEQUENCE OF INTEGER,

maxDelta DeltaTime OPTIONAL

}

ExtSignContext ::= SEQUENCE {

businessApplicationDomain [0] SigPolicyQualifierInfo OPTIONAL,

transactionalContext [1] SigPolicyQualifierInfo OPTIONAL,

disputeResolution [2] SigPolicyQualifierInfo OPTIONAL,

audienceConditions [3] SigPolicyQualifierInfo OPTIONAL,

extSignPolExtensions [4] SignPolExtensions OPTIONAL

}

END

E.2 Extended Signature Policy XML definition

Please note that the XSD definition has been obtained using a tool that automatically

translates ASN.1 to XML schema. A clearer representation can be obtained, and some

elements definitions can be substituted by elements defined in XAdES or other XML

related standards (e.g. ObjectIdentifier element type).

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://jlopez.thesis.uc3m.es/ETS-

ExtendedElectronicSignaturePolicies-97Syntax"

targetNamespace="http://jlopez.thesis.uc3m.es/ETS-

332

E.2 Extended Signature Policy XML definition

ExtendedElectronicSignaturePolicies-97Syntax"

xmlns:asn1="http://www.obj-sys.com/v1.0/XMLSchema"

elementFormDefault="qualified">

<xsd:import namespace="http://www.obj-sys.com/v1.0/XMLSchema"

schemaLocation="http://www.obj-sys.com/v1.0/XMLSchema/asn1.xsd"/>

<!-- PDU definition -->

<xsd:element name="sPuri" type="SPuri"/>

<xsd:simpleType name="SPuri">

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

<!-- PDU definition -->

<xsd:element name="sPUserNotice" type="SPUserNotice"/>

<xsd:complexType name="SPUserNotice">

<xsd:sequence>

<xsd:element name="noticeRef" minOccurs="0" type="NoticeReference"/>

<xsd:element name="explicitText" minOccurs="0" type="DisplayText"/>

</xsd:sequence>

</xsd:complexType>

<!-- PDU definition -->

<xsd:element name="extSignaturePolicy" type="ExtSignaturePolicy"/>

<xsd:complexType name="ExtSignaturePolicy">

<xsd:sequence>

<xsd:element name="extSignPolicyInfo" type="ExtSignPolicyInfo"/>

<xsd:element name="extSignPolicyProtection" minOccurs="0"

type="ExtSignPolicyProtection"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="SigPolicyQualifierId">

<xsd:restriction base="asn1:ObjectIdentifier"/>

</xsd:simpleType>

<xsd:simpleType name="CommitmentTypeIdentifier">

<xsd:restriction base="asn1:ObjectIdentifier"/>

</xsd:simpleType>

<xsd:complexType name="DirectoryString">

<xsd:choice>

333

E. ASN.1 AND XML SCHEMAS

<xsd:element name="teletexString">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="printableString">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="universalString">

<xsd:simpleType>

<xsd:restriction base="asn1:UniversalString">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="utf8String">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="bmpString">

<xsd:simpleType>

<xsd:restriction base="asn1:BMPString">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="FieldOfApplication">

<xsd:complexContent>

<xsd:extension base="DirectoryString"/>

334

E.2 Extended Signature Policy XML definition

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="ExtSignPolicyId">

<xsd:restriction base="asn1:ObjectIdentifier"/>

</xsd:simpleType>

<xsd:simpleType name="SignPolicyId">

<xsd:restriction base="asn1:ObjectIdentifier"/>

</xsd:simpleType>

<xsd:complexType name="AlgorithmIdentifier">

<xsd:sequence>

<xsd:element name="algorithm" type="asn1:ObjectIdentifier"/>

<xsd:element name="parameters" minOccurs="0" type="asn1:OpenType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="GeneralName">

<xsd:choice>

<xsd:element name="rfc822Name" type="xsd:string"/>

<xsd:element name="dNSName" type="xsd:string"/>

<xsd:element name="uniformResourceIdentifier" type="xsd:string"/>

<xsd:element name="iPAddress" type="xsd:hexBinary"/>

<xsd:element name="registeredID" type="asn1:ObjectIdentifier"/>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="GeneralNames">

<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:element name="GeneralName" type="GeneralName"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SigPolicyQualifierInfo">

<xsd:sequence>

<xsd:element name="sigPolicyQualifierId" type="SigPolicyQualifierId"/>

<xsd:element name="sigQualifier" type="asn1:OpenType"/>

</xsd:sequence>

</xsd:complexType>

335

E. ASN.1 AND XML SCHEMAS

<xsd:complexType name="DisplayText">

<xsd:choice>

<xsd:element name="visibleString">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

<xsd:maxLength value="200"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="bmpString">

<xsd:simpleType>

<xsd:restriction base="asn1:BMPString">

<xsd:minLength value="1"/>

<xsd:maxLength value="200"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="utf8String">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

<xsd:maxLength value="200"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="NoticeReference">

<xsd:sequence>

<xsd:element name="organization" type="DisplayText"/>

<xsd:element name="noticeNumbers">

<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CommitmentType">

336

E.2 Extended Signature Policy XML definition

<xsd:sequence>

<xsd:element name="identifier" type="CommitmentTypeIdentifier"/>

<xsd:element name="fieldOfApplication" minOccurs="0"

type="FieldOfApplication"/>

<xsd:element name="semantics" minOccurs="0" type="DirectoryString"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SelectedCommitmentTypes">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="CHOICE">

<xsd:complexType>

<xsd:choice>

<xsd:element name="empty" type="asn1:NULL"/>

<xsd:element name="recognizedCommitmentType"

type="CommitmentType"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SigningPeriod">

<xsd:sequence>

<xsd:element name="notBefore" type="xsd:dateTime"/>

<xsd:element name="notAfter" minOccurs="0" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SignPolExtn">

<xsd:sequence>

<xsd:element name="extnID" type="asn1:ObjectIdentifier"/>

<xsd:element name="extnValue" type="xsd:hexBinary"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SignPolExtensions">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="SignPolExtn" type="SignPolExtn"/>

</xsd:sequence>

</xsd:complexType>

337

E. ASN.1 AND XML SCHEMAS

<xsd:complexType name="DeltaTime">

<xsd:sequence>

<xsd:element name="deltaSeconds" type="xsd:integer"/>

<xsd:element name="deltaMinutes" type="xsd:integer"/>

<xsd:element name="deltaHours" type="xsd:integer"/>

<xsd:element name="deltaDays" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ExtSignPolicyIdentifier">

<xsd:sequence>

<xsd:element name="extSignPolicyId" type="ExtSignPolicyId"/>

<xsd:element name="dateOfIssue" type="xsd:dateTime"/>

<xsd:element name="policyIssuerName" type="GeneralNames"/>

<xsd:element name="extSigPolicyQualifiers" minOccurs="0">

<xsd:complexType>

<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:element name="SigPolicyQualifierInfo"

type="SigPolicyQualifierInfo"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="extSignPolExtensions" minOccurs="0"

type="SignPolExtensions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="AcceptableSignPolicies">

<xsd:list itemType="SignPolicyId"/>

</xsd:simpleType>

<xsd:complexType name="RelativeTimingAndSequence">

<xsd:sequence>

<xsd:element name="pathToRefSignature">

<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="maxDelta" minOccurs="0" type="DeltaTime"/>

</xsd:sequence>

338

E.2 Extended Signature Policy XML definition

</xsd:complexType>

<xsd:complexType name="TimingAndSequence">

<xsd:choice>

<xsd:element name="absoluteTimingAndSequence" type="SigningPeriod"/>

<xsd:element name="relativeTimingAndSequence">

<xsd:complexType>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="RelativeTimingAndSequence"

type="RelativeTimingAndSequence"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="Signature">

<xsd:sequence>

<xsd:element name="identifier">

<xsd:simpleType>

<xsd:restriction base="xsd:unsignedInt">

<xsd:minInclusive value="0"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="signer">

<xsd:simpleType>

<xsd:restriction base="xsd:unsignedInt">

<xsd:minInclusive value="0"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="acceptableSignPolicies"

type="AcceptableSignPolicies"/>

<xsd:element name="allowedCommitmentTypes"

type="SelectedCommitmentTypes"/>

<xsd:element name="counterSignatures" minOccurs="0"

type="TreeOfSignatures"/>

<xsd:element name="timingAndSequence" minOccurs="0"

type="TimingAndSequence"/>

<xsd:element name="extSignPolExtensions" minOccurs="0"

339

E. ASN.1 AND XML SCHEMAS

type="SignPolExtensions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TreeOfSignatures">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="signature" type="Signature"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TreesOfSolutions">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="treeOfSignature" type="TreeOfSignatures"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ExtSignValidationPolicy">

<xsd:sequence>

<xsd:element name="signingPeriod" type="SigningPeriod"/>

<xsd:element name="treesOfSolutions" type="TreesOfSolutions"/>

<xsd:element name="extSignPolExtensions" minOccurs="0"

type="SignPolExtensions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ExtSignContext">

<xsd:sequence>

<xsd:element name="businessApplicationDomain" minOccurs="0"

type="SigPolicyQualifierInfo"/>

<xsd:element name="transactionalContext" minOccurs="0"

type="SigPolicyQualifierInfo"/>

<xsd:element name="disputeResolution" minOccurs="0"

type="SigPolicyQualifierInfo"/>

<xsd:element name="audienceConditions" minOccurs="0"

type="SigPolicyQualifierInfo"/>

<xsd:element name="extSignPolExtensions" minOccurs="0"

type="SignPolExtensions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ExtSignPolicyInfo">

340

E.2 Extended Signature Policy XML definition

<xsd:sequence>

<xsd:element name="extSignPolicyIdentifier"

type="ExtSignPolicyIdentifier"/>

<xsd:element name="extSignValidationPolicy"

type="ExtSignValidationPolicy"/>

<xsd:element name="extSignContext" minOccurs="0"

type="ExtSignContext"/>

<xsd:element name="extSignPolExtensions" minOccurs="0"

type="SignPolExtensions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ExtSignPolicyProtection">

<xsd:sequence>

<xsd:element name="protectionAlg" type="AlgorithmIdentifier"/>

<xsd:element name="protection" type="asn1:BitString"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

341

E. ASN.1 AND XML SCHEMAS

342

Appendix F

Extended Signature Policy

Example for OFEPSP+

This Appendix provides an example of an instantiation of the extended electronic sig-

nature policy defined in Chapter 8. The example has been designed for a transactional

context where OFEPSP+ protocol, defined in Chapter 9, must be followed. For sim-

plicity purposes, in this example the binding by environment attestation has not been

taken into account. The policy instance has been written in ASN.1, complying with the

ASN.1 schema given in Appendix E, and defines two Trees of Signatures (TSi) in the

Trees of Solutions field as the potential set of signatures that can make the transaction

become effective. In particular, the first TSi (treesOfSolutions[0]) corresponds to the

set of signatures to be generated in the main protocol of OFEPSP+, while the second

TSi (treesOfSolutions[1]) corresponds to the set of signatures that must be generated

in case the recovery subprotocol is to be executed.

extSignaturePolicy {

extSignPolicyInfo {

extSignPolicyIdentifier {

extSignPolicyId = { 1 0 }

dateOfIssue = 19970717103000

policyIssuerName[0] {

uniformResourceIdentifier = jlopez.thesis.uc3m.es/Issuer } }

extSignValidationPolicy {

signingPeriod {

notBefore = 19970717103000

notAfter = 20170717103000 }

treesOfSolutions[0][0] {

identifier = 1

signer = 10

acceptableSignPolicies[0] = { 1 0 }

343

F. EXTENDED SIGNATURE POLICY EXAMPLE FOR OFEPSP+

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 1 }

fieldOfApplication {

printableString = First Partial Non-repudiation of

Origin generated under the context of an extended

signature policy } } } }

treesOfSolutions[0][1] {

identifier = 2

signer = 20

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 2 }

fieldOfApplication {

printableString = First Partial Non-repudiation of

Receipt generated under the context of an extended

signature policy } } }

counterSignatures[0] {

identifier = 3

signer = 10

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 3 }

fieldOfApplication {

printableString = Second Partial Non-repudiation of

Origin generated under the context of an extended

signature policy } } }

counterSignatures[0] {

identifier = 4

signer = 20

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 4 }

fieldOfApplication {

printableString = Second Partial Non-repudiation of

Receipt generated under the context of an extended

signature policy } } }

counterSignatures[0] {

344

identifier = 5

signer = 10

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 5 }

fieldOfApplication {

printableString = Non-repudiation of Evidence

generated under the context of an extended

signature policy } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

pathToRefSignature[1] = 3

pathToRefSignature[2] = 4

maxDelta {

deltaSeconds = 0

deltaMinutes = 15

deltaHours = 0

deltaDays = 0 } } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

pathToRefSignature[1] = 3

maxDelta {

deltaSeconds = 0

deltaMinutes = 5

deltaHours = 0

deltaDays = 0 } } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

maxDelta {

deltaSeconds = 0

deltaMinutes = 15

deltaHours = 0

deltaDays = 0 } } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 1

maxDelta {

345

F. EXTENDED SIGNATURE POLICY EXAMPLE FOR OFEPSP+

deltaSeconds = 0

deltaMinutes = 5

deltaHours = 0

deltaDays = 0 } } } }

treesOfSolutions[1][0] {

identifier = 1

signer = 10

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 1 }

fieldOfApplication {

printableString = First Partial Non-repudiation of

Origin generated under the context of an extended

signature policy } } } }

treesOfSolutions[1][1] {

identifier = 2

signer = 20

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 2 }

fieldOfApplication {

printableString = First Partial Non-repudiation of

Receipt generated under the context of an extended

signature policy } } }

counterSignatures[0] {

identifier = 3

signer = 10

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 3 }

fieldOfApplication {

printableString = Second Partial Non-repudiation of

Origin generated under the context of an extended

signature policy } } }

counterSignatures[0] {

identifier = 4

signer = 20

acceptableSignPolicies[0] = { 1 0 }

346

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 4 }

fieldOfApplication {

printableString = Second Partial Non-repudiation

of Receipt generated under the context of an

extended signature policy } } }

counterSignatures[0] {

identifier = 5

signer = 30

acceptableSignPolicies[0] = { 1 0 }

allowedCommitmentTypes[0] {

recognizedCommitmentType {

identifier = { 0 5 }

fieldOfApplication {

printableString = Non-repudiation of Evidence

generated by TTP under the context of an

extended signature policy } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

pathToRefSignature[1] = 3

pathToRefSignature[2] = 4 } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

pathToRefSignature[1] = 3

maxDelta {

deltaSeconds = 0

deltaMinutes = 5

deltaHours = 0

deltaDays = 0 } } } }

timingAndSequence {

relativeTimingAndSequence {

pathToRefSignature[0] = 2

maxDelta {

deltaSeconds = 0

deltaMinutes = 15

deltaHours = 0

deltaDays = 0 } } } }

timingAndSequence {

347

F. EXTENDED SIGNATURE POLICY EXAMPLE FOR OFEPSP+

relativeTimingAndSequence {

pathToRefSignature[0] = 1

maxDelta {

deltaSeconds = 0

deltaMinutes = 5

deltaHours = 0

deltaDays = 0 } } } } } } }

extSignContext {

businessApplicationDomain {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Sale of goods/international trade

transactions } } }

transactionalContext {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Purchase Order/Acceptance in relation to

a book purchase order made through Alice Bookshop Internet

Web page between Alice Bookshop and a client of Alice

Bookshop } } }

disputeResolution {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = Any disputes arising under this policy

shall be referred to a suitably qualified expert, whose

decision shall be final and binding upon the parties,

provided that this signature policy imposes the constraints

under which any signature created under it shall be valid.

The dispute resolution procedure shall be carried out in a

European court with appropriate responsibilities } } }

audienceConditions {

sigPolicyQualifierId = { 1 2 840 113549 1 9 16 5 1 }

sigQualifier {

explicitText {

visibleString = The digital signature-based evidence is

only valid in a specified jurisdiction, where laws exist

which recognize the legal validity of signatures created

under conditions as specified in the policy } } } }

348

Appendix G

High-Level Protocol Specification

Language for OFEPSP+

Next, the High-Level Protocol Specification Language (HLPSL) that models the im-

proved Optimistic Fair Exchange Protocol based on Signature Policies (OFEPSP+)

is given. It should be mentioned that, for simplicity purposes, the HLPSL specifica-

tion assumes the binding by procedure, and not the environment attestation technique

applied in Chapter 9.

% -----------------

% Rol origin (E1)

% -----------------

role e1(

E1,E2,R,S : agent,

Pub_e1,Pub_e2,Pub_r,Pub_s : public_key,

SND_E1_R,RCV_E1_R,

SND_E1_S,RCV_E1_S : channel(dy),

Msg : text,

Tpl_id : text) played_by E1

def=

local

State : nat,

% Unique identifier of the protocol run

Label : text,

% Evidences generated

PNRO1,NRE,Abort : {message}_inv(public_key),

% Evidences verified

PNRR2,NRE_TTP,Abort_TTP : {message}_inv(public_key)

init

349

G. HIGH-LEVEL PROTOCOL SPECIFICATION LANGUAGE FOR
OFEPSP+

State := 0

transition

% Main protocol

0. State = 0 /\ RCV_E1_R(start) =|>

State’ := 1 /\ Label’ := new()

/\ PNRO1’ := {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label’.

Tpl_id}_inv(Pub_e1)

/\ SND_E1_R(PNRO1’)

/\ witness(E1,R,r_e1_pnro1,PNRO1’)

1. State = 1 /\ RCV_E1_R(PNRR2’)

/\ PNRR2’ = {{Pub_e1.Pub_e2.Pub_r.Pub_s.{Pub_e1.Pub_e2.

Pub_r.Pub_s.Msg.Label.Tpl_id}_inv(Pub_r)}

_inv(Pub_e2)}_inv(Pub_r) =|>

State’ := 2 /\ NRE’ := {PNRR2’}_inv(Pub_e1)

/\ SND_E1_R(NRE’)

/\ witness(E1,R,r_e1_nre,NRE’)

/\ wrequest(E1,R,e1_r_pnrr2,PNRR2’)

% Abort subprotocol

2. State = 1 --|>

State’ := 3 /\ Abort’ := {abort.Label}_inv(Pub_e1)

/\ SND_E1_S(Abort’)

% - Protocol already recovered by receiver

3. State = 3 /\ RCV_E1_S(NRE_TTP’)

/\ NRE_TTP’ = {{{Pub_e1.Pub_e2.Pub_r.Pub_s.{Pub_e1.Pub_e2.

Pub_r.Pub_s.Msg.Label.Tpl_id}_inv(Pub_r)}_inv(Pub_e2)}

_inv(Pub_r)}_inv(Pub_s) =|>

State’ := 4

% - Protocol successfully aborted

4. State = 3 /\ RCV_E1_S(Abort_TTP’)

/\ Abort_TTP’ = {{abort.Label}_inv(Pub_e1)}_inv(Pub_s) =|>

State’ := 5

end role

350

% -----------------

% Rol origin (E2)

% -----------------

role e2(

E1,E2,R : agent,

Pub_e1,Pub_e2,Pub_r,Pub_s : public_key,

SND_E2_R,RCV_E2_R : channel(dy),

Msg : text,

Tpl_id : text) played_by E2

def=

local

State : nat,

% Unique identifier of the protocol run received from R

Label : text,

% Evidence generated

PNRO2 : {message}_inv(public_key),

% Evidences verified

PNRO1,PNRR1 : {message}_inv(public_key)

init

State := 0

transition

% Main protocol

0. State = 0 /\ RCV_E2_R(PNRO1’.PNRR1’)

/\ PNRO1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label’.Tpl_id}

_inv(Pub_e1)

/\ PNRR1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label’.Tpl_id}

_inv(Pub_r) =|>

State’ := 1 /\ PNRO2’ := {Pub_e1.Pub_e2.Pub_r.Pub_s.PNRR1’}

_inv(Pub_e2)

/\ SND_E2_R(PNRO2’)

/\ witness(E2,R,r_e2_pnro2,PNRO2’)

/\ wrequest(E2,R,e2_r_pnrr1,PNRR1’)

end role

351

G. HIGH-LEVEL PROTOCOL SPECIFICATION LANGUAGE FOR
OFEPSP+

% -----------------

% Rol receiver (R)

% -----------------

role receiver(

E1,E2,R,S : agent,

Pub_e1,Pub_e2,Pub_r,Pub_s : public_key,

SND_R_E1,RCV_R_E1,

SND_R_E2,RCV_R_E2,

SND_R_S,RCV_R_S : channel(dy),

Tpl_id : text) played_by R

def=

local

State : nat,

Label : text,

Msg : text,

% Evidences generated

PNRR1,PNRR2 : {message}_inv(public_key),

% Evidences verified

PNRO1,PNRO2,NRE,NRE_TTP,Abort_TTP : {message}_inv(public_key)

init

State := 0

transition

% Main protocol

0. State = 0 /\ RCV_R_E1(PNRO1’)

/\ PNRO1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id}

_inv(Pub_e1) =|>

State’ := 1 /\ PNRR1’ := {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id}

_inv(Pub_r)

/\ SND_R_E2(PNRO1’.PNRR1’)

/\ witness(R,E2,e2_r_pnrr1,PNRR1’)

/\ wrequest(R,E1,r_e1_pnro1,PNRO1’)

1. State = 1 /\ RCV_R_E2(PNRO2’)

/\ PNRO2’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.PNRR1}_inv(Pub_e2) =|>

State’ := 2 /\ PNRR2’ := {PNRO2’}_inv(Pub_r)

/\ SND_R_E1(PNRR2’)

352

/\ witness(R,E1,e1_r_pnrr2,PNRR2’)

/\ wrequest(R,E2,r_e2_pnro2,PNRO2’)

2. State = 2 /\ RCV_R_E1(NRE’)

/\ NRE’ = {PNRR2}_inv(Pub_e1) =|>

State’ := 3 /\ wrequest(R,E1,r_e1_nre,NRE’)

% Quit

3. State = 1 --|>

State’ := 4

% Recovery subprotocol

4. State = 2 --|>

State’ := 5 /\ SND_R_S(PNRO1.PNRR1.PNRO2.PNRR2)

% - Protocol successfully recovered

5. State = 5 /\ RCV_R_S(NRE_TTP’)

/\ NRE_TTP’ = {PNRR2}_inv(Pub_s) =|>

State’ := 6

% - Protocol already aborted by origin

6. State = 5 /\ RCV_R_S(Abort_TTP’)

/\ Abort_TTP’ = {{abort.Label}_inv(Pub_e1)}_inv(Pub_s) =|>

State’ := 7

end role

% -----------------

% Rol server (TTP)

% -----------------

role server(

S : agent,

Pub_s,Pub_e1,Pub_e2,Pub_r : public_key,

AList : (message) set,

RList : (message) set) played_by S

def=

local

State : nat,

Label : text,

Msg : text,

353

G. HIGH-LEVEL PROTOCOL SPECIFICATION LANGUAGE FOR
OFEPSP+

Tpl_id : text,

% Evidences generated

NRE_TTP,Abort_TTP : {message}_inv(public_key),

% Evidences verified

PNRO1,PNRR1,PNRO2,

PNRR2,Abort : {message}_inv(public_key),

SND,RCV : channel(dy)

init

State := 0

transition

% State values:

% 0: initial value

% 1: value after an abort

% 2: value after a resolve

% The server can be used for only one session

% Abort subprotocol (E1), when not previously aborted nor recovered

1. State = 0 /\ RCV(Abort’)

/\ Abort’ = {abort.Label’}_inv(Pub_e1)

/\ not(in({{{Pub_e1.Pub_e2.Pub_r.Pub_s.{Pub_e1.Pub_e2.Pub_r.

Pub_s.Msg’.Label’.Tpl_id’}_inv(Pub_r)}_inv(Pub_e2)}

_inv(Pub_r)}_inv(Pub_s), RList)) =|>

State’ := 1 /\ Abort_TTP’ := {Abort’}_inv(Pub_s)

/\ AList’ := cons(Abort_TTP’, AList)

/\ SND(Abort_TTP’)

% Recovery subprotocol (R), when not previously aborted nor recovered

2. State = 0 /\ RCV(PNRO1’.PNRR1’.PNRO2’.PNRR2’)

/\ PNRO1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id’}

_inv(Pub_e1)

/\ PNRR1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id’}

_inv(Pub_r)

/\ PNRO2’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.PNRR1’}_inv(Pub_e2)

/\ PNRR2’ = {PNRO2’}_inv(Pub_r)

/\ not(in({{abort.Label’}_inv(Pub_e1)}_inv(Pub_s), AList)) =|>

State’ := 2 /\ NRE_TTP’ := {PNRR2’}_inv(Pub_s)

/\ RList’ := cons(NRE_TTP’, RList)

/\ SND(NRE_TTP’)

354

% Abort subprotocol (E1), when already aborted

3. State = 1 /\ RCV(Abort’)

/\ Abort’ = {abort.Label’}_inv(Pub_e1)

/\ in({Abort’}_inv(Pub_s), AList) =|>

State’ := 1 /\ Abort_TTP’ := {Abort’}_inv(Pub_s)

/\ SND(Abort_TTP’)

% Recovery subprotocol (R), when previously aborted

4. State = 1 /\ RCV(PNRO1’.PNRR1’.PNRO2’.PNRR2’)

/\ PNRO1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id’}

_inv(Pub_e1)

/\ PNRR1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg’.Label’.Tpl_id’}

_inv(Pub_r)

/\ PNRO2’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.PNRR1’}_inv(Pub_e2)

/\ PNRR2’ = {PNRO2’}_inv(Pub_r)

/\ in({{abort.Label’}_inv(Pub_e1)}_inv(Pub_s), AList) =|>

State’ := 1 /\ Abort_TTP’ := {{abort.Label’}_inv(Pub_e1)}_inv(Pub_s)

/\ SND(Abort_TTP’)

% Abort subprotocol (E1), when previously recovered

5. State = 2 /\ RCV(Abort’)

/\ Abort’ = {abort.Label’}_inv(Pub_e1)

/\ in({{{Pub_e1.Pub_e2.Pub_r.Pub_s.{Pub_e1.Pub_e2.Pub_r.

Pub_s.Msg.Label’.Tpl_id}_inv(Pub_r)}_inv(Pub_e2)}_

inv(Pub_r)}_inv(Pub_s), RList) =|>

State’ := 2 /\ NRE_TTP’ := {{{Pub_e1.Pub_e2.Pub_r.Pub_s.

{Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label’.Tpl_id}_inv(Pub_r)}

_inv(Pub_e2)}_inv(Pub_r)}_inv(Pub_s)

/\ SND(NRE_TTP’)

% Recovery subprotocol (R), when already recovered

6. State = 2 /\ RCV(PNRO1’.PNRR1’.PNRO2’.PNRR2’)

/\ PNRO1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label.Tpl_id}

_inv(Pub_e1)

/\ PNRR1’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.Msg.Label.Tpl_id}

_inv(Pub_r)

/\ PNRO2’ = {Pub_e1.Pub_e2.Pub_r.Pub_s.PNRR1’}_inv(Pub_e2)

/\ PNRR2’ = {PNRO2’}_inv(Pub_r)

/\ in({PNRR2’}_inv(Pub_s), RList) =|>

State’ := 2 /\ NRE_TTP’ := {PNRR2’}_inv(Pub_s)

355

G. HIGH-LEVEL PROTOCOL SPECIFICATION LANGUAGE FOR
OFEPSP+

/\ SND(NRE_TTP’)

end role

% -----------------

% Rol session

% -----------------

role session(

E1,E2,R,S : agent,

Pub_e1,Pub_e2,Pub_r,Pub_s : public_key,

Msg : text,

Tpl_id : text)

def=

local

SND_E1_R,RCV_E1_R,SND_E1_S,RCV_E1_S,

SND_E2_R,RCV_E2_R,

SND_R_E1,RCV_R_E1,SND_R_E2,RCV_R_E2,SND_R_S,RCV_R_S : channel(dy)

composition

e1(E1,E2,R,S,Pub_e1,Pub_e2,Pub_r,Pub_s,SND_E1_R,RCV_E1_R,

SND_E1_S,RCV_E1_S,Msg,Tpl_id)

/\ e2(E1,E2,R,Pub_e1,Pub_e2,Pub_r,Pub_s,SND_E2_R,RCV_E2_R,

Msg,Tpl_id)

/\ receiver(E1,E2,R,S,Pub_e1,Pub_e2,Pub_r,Pub_s,SND_R_E1,

RCV_R_E1,SND_R_E2,RCV_R_E2,SND_R_S,RCV_R_S,Tpl_id)

end role

% -----------------

% Rol environment

% -----------------

role environment()

def=

local

AList,RList : (message) set

const

e1,e2,r,s : agent,

356

pub_e1,pub_e2,pub_r,pub_s,pub_i : public_key,

% Reference of the template used in the transaction

% [Pre-shared knowledge between E1, E2 and Receiver]

tpl_id,tpl_id2,tpl_id3,tpl_id4 : text,

% Message sent by E1 to R

% [Pre-shared knowledge between E1 and E2]

msg,msg2,msg3,msg4 : text,

timeout,abort : protocol_id,

e1_r_pnrr2,e1_s_nre_ttp,e1_s_abort_ttp : protocol_id,

e2_r_pnrr1,e2_s_nre_ttp,e2_s_abort_ttp : protocol_id,

r_e1_pnro1,r_e1_nre,r_e2_pnro2,

r_s_nre_ttp,r_s_abort_ttp : protocol_id,

s_e1_abort,s_e2_abort,s_r_pnrr1,s_r_pnrr2 : protocol_id

init

AList := {} /\

RList := {}

% Not every message (msg) nor template identifier (tpl_id) are initially

% known by the intruder. Messages ’msg’ and ’msg4’ are only known by

% origin’s E1 and E2, and template identifier ’tpl_id’ by

% origin’s E1 and E2 and the Receiver

intruder_knowledge = {e1,e2,r,s,pub_e1,pub_e2,pub_r,pub_s,pub_i,

inv(pub_i),msg2,msg3,tpl_id2,tpl_id3,tpl_id4}

% It should be tested several instances of origin and receiver and just

% one instance of server. This is done by instanciating the server here,

% and origin and receiver in session role

% Different ’msg’ and ’tpl_id’ are given in each session

composition

% Protocol session with legitimate agents

session(e1,e2,r,s,pub_e1,pub_e2,pub_r,pub_s,msg,tpl_id)

% Protocol session with legitimate agents playing a different role

% than expected

%/\ session(r,e2,e1,s,pub_r,pub_e2,pub_e1,pub_s,msg,tpl_id)

% Protocol session with legitimate agents playing a different role

% than expected

%/\ session(e1,r,e2,s,pub_e1,pub_r,pub_e2,pub_s,msg,tpl_id)

357

G. HIGH-LEVEL PROTOCOL SPECIFICATION LANGUAGE FOR
OFEPSP+

% Protocol session with legitimate agents playing a different role

% than expected

%/\ session(e2,e1,r,s,pub_e2,pub_e1,pub_r,pub_s,msg,tpl_id)

% 2: protocol session with intruder impersonating e1

%/\ session(i,e2,r,s,pub_i,pub_e2,pub_r,pub_s,msg2,tpl_id2)

% 3: protocol session with intruder impersonating e2

%/\ session(e1,i,r,s,pub_e1,pub_i,pub_r,pub_s,msg3,tpl_id3)

% 4: protocol session with intruder impersonating r

%/\ session(e1,e2,i,s,pub_e1,pub_e2,pub_i,pub_s,msg4,tpl_id4)

/\ server(s,pub_s,pub_e1,pub_e2,pub_r,AList,RList)

%/\ server(s,pub_s,pub_i,pub_e2,pub_r,AList,RList)

end role

% -----------------

% Security goals

% Internally, temporal logic formulae is used

% -----------------

goal

weak_authentication_on r_e1_pnro1

weak_authentication_on e2_r_pnrr1

weak_authentication_on r_e2_pnro2

weak_authentication_on e1_r_pnrr2

weak_authentication_on r_e1_nre

end goal

% -----------------

% Execution ...

% -----------------

environment()

358

	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Context
	1.2 Statement of the Problem
	1.3 Objectives and Contributions
	1.4 Thesis Organization
	1.5 Syntax Notation

	Acronyms, Abbreviations and Definitions

	II State of the Art
	2 Fundamentals on Digital Signatures
	2.1 Digital Signatures
	2.2 Public Key Infrastructure
	2.3 Electronic Signatures
	2.4 Electronic Signature Policies
	2.5 Electronic Signatures from a Legal Viewpoint

	3 Non-repudiation Services
	3.1 General Model for Non-repudiation Services
	3.2 Non-repudiation Using Digital Signatures
	3.3 Fair Non-repudiation and Fair Exchange Protocols

	4 Taxonomies of Attacks and Vulnerabilities in Computer Systems
	4.1 Introduction
	4.2 The Dimension Approach: Lindqvist and Johsson's Taxonomy and Others
	4.3 CEN's Classification of Threats on Signature Creation Applications
	4.4 Hill's Taxonomy of Attacks on XML Signatures
	4.5 Kain's Taxonomy
	4.6 Rae and Wildman's Taxonomy
	4.7 Hansman and Hunt's Taxonomy
	4.8 The Common Attack Pattern Enumeration and Classification

	5 Security Enhancing Technologies and Methods
	5.1 Security Assurance by Objective Evaluation
	5.2 Secure Software Development Methodologies
	5.3 Revocation Mechanisms and Limitations on Key Usages
	5.4 Smart Card-based Solutions
	5.5 Usage of Mobile Devices
	5.6 Forcing a Confirmation Step
	5.7 Split Trust Paradigm
	5.8 Trusted Computing Technologies
	5.9 Server-Aided Signatures
	5.10 Other Proposals

	III Proposal
	6 A Taxonomy of Attacks on Digital Signatures
	6.1 Terms and Definitions
	6.2 System Model
	6.2.1 Signature creation environment
	6.2.2 Signature verification environment

	6.3 Threat Model
	6.3.1 Assets, security objectives and security functional requirements
	6.3.2 Faults and service failures
	6.3.3 Attacker profile
	6.3.4 Assumptions on the threat model

	6.4 A Taxonomy of Attacks on Digital Signatures
	6.4.1 Dimension one: Attacker's goal
	6.4.2 Dimension two: Method of attack
	6.4.3 Dimension three: Target of the attack

	6.5 Method of Classification
	6.6 Chapter Summary

	7 Division of the Signature Environment
	7.1 Overview
	7.2 Implementing the Division Principle
	7.2.1 General rules
	7.2.2 Security mechanisms for evidence generation
	7.2.2.1 Chaining mode
	7.2.2.2 Independent mode

	7.2.3 Security mechanisms for evidence verification
	7.2.3.1 Chaining mode
	7.2.3.2 Independent mode

	7.2.4 Combination of schemes
	7.2.5 The binding between the environment and the signature creation data
	7.2.5.1 By procedure
	7.2.5.2 By environment attestation

	7.2.6 Some remarks
	7.2.6.1 Conscious data verification
	7.2.6.2 Restricted format of data to be signed

	7.3 Chapter Summary

	8 Extended Electronic Signature Policies
	8.1 Policy Definition
	8.1.1 Base structure
	8.1.2 Policy identifier
	8.1.3 Validation policy
	8.1.4 Business and transactional domains
	8.1.5 Signing roles

	8.2 Using the Policy
	8.2.1 The generation process
	8.2.2 The validation process
	8.2.2.1 Approach
	8.2.2.2 Pruning methods
	8.2.2.3 Refinement stage

	8.2.3 Integration in AdES formats
	8.2.4 Certificate extension

	8.3 Chapter Summary

	9 An Optimistic Fair Exchange Protocol based on Signature Policies
	9.1 The Protocol
	9.1.1 Entities of the protocol
	9.1.2 Evidence exchanged
	9.1.3 Main protocol
	9.1.4 Recovery subprotocol
	9.1.5 Abort subprotocol
	9.1.6 Dispute resolution

	9.2 Implementation Guidelines
	9.2.1 Architecture
	9.2.2 Requirements for the communication channels
	9.2.3 Electronic signature format
	9.2.4 Addition of validation information
	9.2.5 Addition of new environments

	9.3 Chapter Summary

	IV Evaluation and Conclusions
	10 Evaluation
	10.1 Evaluation of the Taxonomy
	10.1.1 Evaluation against general requirements
	10.1.2 Survey and classification of attacks on digital signatures

	10.2 Analysis of the Enhancement of Evidence Reliability
	10.2.1 Formal proofs
	10.2.1.1 Provable benefits of using several environments
	10.2.1.2 Provable benefits of using heterogeneous environments
	10.2.1.3 Numerical examples
	10.2.1.4 Towards perfect security

	10.2.2 Analysis respecting the taxonomy

	10.3 Experimental Implementation
	10.3.1 Overview
	10.3.1.1 Architecture
	10.3.1.2 Electronic signature format
	10.3.1.3 Set of signatures composition

	10.3.2 Evaluation of the validation algorithm
	10.3.3 OFEPSP+ simulation

	10.4 OFEPSP+ Formal Validation
	10.4.1 OFEPSP+ specification in HLPSL
	10.4.1.1 Restrictions applied
	10.4.1.2 Analysis scenarios

	10.4.2 HLPSL correctness verification
	10.4.3 OFEPSP+ security validation
	10.4.4 Informal analysis of fairness property

	10.5 Chapter Summary

	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Future Work

	V Bibliography and Appendices
	Bibliography
	A Publications and Patents
	B Classified Attacks on Digital Signatures
	C Extended Signature Policy Validation Algorithm
	C.1 Graphical Representation of a Tree
	C.2 Validation Algorithm
	C.2.1 Exploring the TSi
	C.2.2 Signature Matching
	C.2.3 Pruning Methods
	C.2.3.1 Signer-based pruning
	C.2.3.2 Path-based pruning
	C.2.3.3 Distribution-based pruning
	C.2.3.4 Dimension-based pruning

	C.2.4 Refinement Stage
	C.2.4.1 Detecting potential deadlocks
	C.2.4.2 Detecting unvisited nodes
	C.2.4.3 Evaluating the timing and sequence dependencies

	D Test Cases for the Extended Signature Policy Validation Algorithm
	D.1 Textual Representation of a Tree
	D.2 Trees of Signatures for the Test Cases
	D.3 Set of Signatures for the Test Cases
	D.4 Test Cases

	E ASN.1 and XML Schemas
	E.1 Extended Signature Policy ASN.1 definition
	E.2 Extended Signature Policy XML definition

	F Extended Signature Policy Example for OFEPSP+
	G High-Level Protocol Specification Language for OFEPSP+

